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In this lecture we analyze the structure of the group algebra kG
completely, both as a ring and as a G-module, for every
algebraically closed field k whose characteristic does not divide
the order of G. We will see that G has only finitely many
inequivalent irreducible representations and that they all occur
in kG.
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For any positive integer r , denote by Mr(k) the ring of r × r
matrices over k .

Theorem 10, p. 861
For every algebraically closed basefield k whose characteristic
does not divide the order of the finite group G, the group

algebra kG is isomorphic to the direct sum
m⊕

i=1
Mni (k) of finitely

many rings Mni (k). Irreducible kG-modules (up to equivalence)
are in bijection to summands Si = Mni (k) of kG, with the module
Mi = kni corresponding to the summand Si , such that Si acts on
Mi by matrix multiplication by column vectors while the other
summands (even those isomorphic to Si) act by 0. In particular,
kG is isomorphic as a G-module to the direct sum of ni copies of

kni for 1 ≤ i ≤ m. The sum
m∑

i=1
n2

i of the squares of the ni equals

the order of G.
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Proof.
Let M be an irreducible G-module of degree d. Let v1, . . . ,vd be
linearly independent vectors in M. I claim that
kG(v1, . . . ,vd) ⊂ Md is all of Md . I prove this by induction on d,
the base case d = 0 being trivial. If the assertion holds for d and
v1, . . . ,vd+1 are independent in M, then the projection of
S = kG(v1, . . . ,vd+1) to the first d coordinates is all of Md . Then
N = {m ∈ M : (0, . . . ,0,m) ∈ S} is a submodule of M; if it is not 0,
then it must be all of M by irreducibility, implying the desired
result. But if N = 0, then for all (v1, . . . ,vd) ∈ Me there is a unique
vd+1 ∈ M with (v1, . . . ,vd+1) ∈ S and the map sending (v1, . . . ,vd)
to vd+1 is a G-module map.
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Proof.
Its restriction to each copy of M in Md must then be a scalar, by
Schur’s Lemma, whence there are c1, . . . ,cd ∈ k with

vd+1 =
e∑

i=1
civi . This is a contradiction, since (v1, . . . ,vd+1) ∈ S and

the vi are independent. Hence in particular we have
kG(v1, . . . ,vd) = Md for any basis v1, . . . ,vd of M. In a similar way,
if M1, . . . ,Mr are r inequivalent irreducible G-modules, of degrees
n1, . . . ,nr , and for each i we choose a basis vi1, . . . , vini

of Mi ,
then the tuple v whose coordinates are the vij is such that kG(v)
is all of Mn1

1 ⊕ . . .⊕ Mnr
r .
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Proof.
This says exactly that kG acts on the direct sum M′ = ⊕iMi as the
sum of matrix rings in the theorem, with Mi

∼= kni . Since the
dimension of kG over k equals the order n of G, we see that
there are only finitely many inequivalent irreducible G-modules
and the sum of the squares of their degrees is at most n. But now
if any x ∈ kG acts by 0 on all irreducible G-modules, then it
would have to do so on kG itself, since kG is the sum of its
irreducible submodules, forcing x = 0. Hence the sum of the
squares of the ni is exactly n, as claimed.
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If we had an explicit isomorphism from kG to the sum of matrix
rings, then we could read off the degrees ni of the irreducible
representations from G. We cannot quite do this, but we will now
show that we can at least compute the number m of irreducible
modules from G.

Theorem 10 (4), p. 861
The number m of inequivalent irreducible representations of G
equals the number of conjugacy classes in G.
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Proof.
Compute the dimension of the center Z of kG in two different
ways. First, an element of kG is central if and only if it acts on
every irreducible representation of G by a scalar, so that as a
vector space (and as a ring) Z is isomorphic to km. On the other
hand, a combination x =

∑
g∈G cgg is central if and only if

hxh−1 = x for all h ∈ G; but hxh−1 =
∑

g∈G cghgh−1, so that x is
central if and only if cg = chgh−1 for all g,h in G. Thus a basis for Z
is given by the sums sC =

∑
g∈C g of the elements in C as C

ranges over the conjugacy classes in G and m is the number of
such classes.
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The elements sC occurring the preceding proof will reappear in
the course. By Schur’s Lemma, each acts by a scalar on any
irreducible representation of G; we will say more about which
scalars occur later. For now we will consider some examples.
First, if G is abelian, then all of its conjugacy classes have just one
element, so the number of its irreducible representations equals
the order of G, in accordance with a previous result. Next, if G is
the simplest nonabelian group, namely the symmetric group S3
on three letters, then it has two irreducible representations of
degree one. One is the trivial representation on k , where every
g ∈ G fixes all elements of k ; the other is the sign representation,
also on k , where g ∈ G acts by 1 if g is even as a permutation
and by −1 if g is odd.
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Since G has just three conjugacy classes, it has just one more
irreducible representation. This must have degree 2, since
|G| = 6 = 22 + 12 + 12. It is easy to identify this representation.
Since G is isomorphic to the symmetry group of an equilateral
triangle, whence its elements may be naturally regarded as real
or complex orthogonal matrices. Working out the entries of
these matrices explicitly, by writing down vertices for the triangle,
one sees that they make sense over any algebraically closed
field k of characteristic different from 2 or 3, so that indeed G has
an irreducible representation of degree 2 over k .
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In a similar way, the dihedral group D4 of order 8 has a natural
irreducible two-dimensional representation over any field
(algebraically closed or not) of characteristic different from 2,
arising from its realization as the symmetries of a square in k2. D4
has five conjugacy classes, and accordingly four more
irreducible representations, necessarily of degree 1. Writing x , y
for the generators of D4, with x a 90◦ rotation and y any
reflection, I recall that x4 = y2 = 1, yxy = x−1. Decreeing that the
180◦ rotation x2 acts trivially on k and moding out by the central
subgroup generated by this element, one gets the Klein
four-group. Letting the generators of this last group act by ±1,
one obtains the four remaining representations of G.
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So far I have studiously avoided working with the matrices arising
from a homomorphism π from G to some GL(V ); but now the
time has come to consider them more carefully. It is too much,
however, to understand such matrices all at once. I would like to
replace a matrix π(g) by a single number χ(g) that would
somehow capture enough information that one could recover
π(g) from it. At first this would seem like a miracle, but it turns out
that I have enough structure in place to perform it.
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Definition, p. 866
Given a representation π : G → GLn(k), its character χ is the
k-valued function defined by χ(g) = tr π(g), where tr denotes
the trace.

Clearly χ(g) is a class function, meaning that χ(g) = χ(h)
whenever g,h lie in the same conjugacy class in G. Recall that
the trace of any (square) matrix equals the sum of its
eigenvalues and that the eigenvalues of π(g) are all roots of
unity in k . I will continue with character theory next time.
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