Lecture 11-25: Representations of $GL_n(\mathbb{C})$

November 25, 2024

Lecture 11-25: Representations of $GL_n(\mathbb{C})$

< ∃⇒

1/1

November 25, 2024

I now specialize down to the case where the ring R of last time is the complex numbers and the module M is \mathbb{C}^m , so that the group $G = GL_m(\mathbb{C})$.

- < ∃ →

Taking $R = \mathbb{C}$, $M = \mathbb{C}^m$, I begin by observing that the representations M^{λ} from last time are polynomial in the sense that the formulas for the entries of $\pi(x)$ in the corresponding homomorphisms π from G to the appropriate $GL_n(\mathbb{C})$ are given by polynomial functions in the entries of $x \in G$. Indeed, this is clear for $M^1 = M$ itself; it follows for M^{λ} in general from the explicit construction of this module.

To get a picture of what a general M^{λ} looks like, let $d \in G$ be a diagonal matrix, say with diagonal entries d_1, \ldots, d_m . Then $de_i = d_i e_i$ for the *i*th unit coordinate vector e_i ; since d acts on a tableau $T \in V = M^{\lambda}$ by simultaneously acting on all of its entries, one sees that if the entries of T are numbers (corresponding to unit coordinate vectors), then $dT = \prod_{i=1}^{m} d_i^{n_i} T$, where n_i is the number of times the integer i occurs as an entry in T. In particular, *d* acts diagonally on *V* with eigenvalues $\prod_{i=1}^{m} T d_i^{n_{i,T}}$ as T runs through all semistandard tableaux of shape λ with entries in [*m*] (call these tableaux on [*m*] for short) and $n_{i,T}$ is the number of times *i* occurs in *T*. Each eigenvalue $d_1^{\alpha_1} \dots d_m^{\alpha_m}$ occurs as many times as there are semistandard tableaux of shape λ with $exactly a_i$ is for all i.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

4/1

One therefore defines the Schur polynomial $s_{\lambda,m}$ in the variables x_1, \ldots, x_m by the formula $\sum_T x^T$, where T runs over semistandard tableaux of shape λ on [m]. Here x^T denotes $x_1^{a_1} \ldots x_m^{a_m}$, where T has a_i is for $1 \le i \le m$ (p. 3). You can think of M^{λ} as a kind of "country" with "cities" corresponding to tuples (a_1, \ldots, a_m) ; the "population" of the city corresponding to this tuple is the coefficient of $x_1^{a_1} \ldots x_m^{a_m}$ in $s_{\lambda,m}$.

・ロン ・回 と ・ ヨ と … ヨ

When semistandard tableaux T of shape λ on [m] are regarded as vectors in M^{λ} they are called weight vectors, by virtue of being eigenvectors for all diagonal matrices in G simultaneously; their weights, regarded as functions on the subgroup of diagonal matrices in G, are monomials in the diagonal entries x_1, \ldots, x_m of these matrices. One of these weight vectors v_H , corresponding to the tableau H with all 1s in the first row, all 2s in the second, and so on, is especially important: if $u \in G$ is upper triangular, then repeated use of multilinearity and the alternating relations shows that uv is scalar multiple of v. This vector v is called a highest weight vector, of highest weight $w = x_1^{\lambda_1} \dots x_m^{\lambda_m}$, where $\lambda_1, \dots, \lambda_m$ are the parts of λ ; here we allow some of these parts to be 0 (but recall that the representation $M^{\lambda} = 0$ if λ has more than *m* parts).

イロン イロン イヨン イヨン 三日

The reason that the weight $x_1^{\lambda_1} \dots x_m^{\lambda_m}$ is called "highest" is that every other weight $x_1^{\mu_1} \dots x_m^{\mu_m}$ occurring in M^{λ} is easily seen to satisfy $\mu_1 \leq \lambda_1, \mu_1 + \mu_2 \leq \lambda_1 + \lambda_2$, and so on, so that there is a partial order on the weights occurring in M^{λ} such that w is the unique maximal weight in this order. Moreover, the only semistandard tableau of shape λ contributing the monomial w to the Schur polynomial $s_{\lambda,m}$ is H, so that this monomial occurs with coefficient 1 in s_{λ} . Furthermore, one can check that the only tableau T of shape λ with uT a scalar multiple of T for all upper triangular matrices u is H itself, so that up to scalar multiples v_H is the only highest weight vector in M^{λ} .

Now it turns out that by the general theory of finite-dimensional

modules over the (complex semisimple) Lie (or linear algebraic) group G, any such module is a direct sum of irreducible modules, and every irreducible module has a unique highest weight vector up to scalar multiple. Thus the modules M^{λ} are all irreducible, and in fact up to isomorphism they are the only finite-dimensional irreducible polynomial representations of G. Using language that I introduced in the lecture on November 1, G has tame representation type: it has infinitely many inequivalent irreducible(=indecomposable) modules, but these can be parametrized in a nice way (by partitions with at most m parts). In particular, there are only countably many of them.

ヘロン ヘアン ヘビン ヘビン

Last time I observed that there is an injective map from M^{λ} to a certain polynomial ring R[X]; since this ring is independent of λ , one can exploit the multiplication structure on it to put a multiplication structure on the direct sum of all M^{λ} . This sum turns out to be closely connected to the geometry of a certain quotient of G. I will return to Fulton's book to say more about this connection in the spring, when I treat commutative algebra. I will also say more about multiplication of Schur functions below.

9/1

The definition of the Schur polynomials $s_{\lambda,m}$ given above makes no direct reference to representation theory, requiring as it does only the definition of semistandard tableau on [m]. It turns out that these polynomials are of considerable interest even outside representation theory. This is primarily because they turn out to be symmetric polynomials, remaining unchanged if the variables x_1, \ldots, x_m are permuted.

For example, if λ has a single part r, then the Schur polynomial $s_{\lambda,m}$ is the sum of all products of r not necessarily distinct variables among x_1, \ldots, x_m , a famous symmetric polynomial called the *r*th complete symmetric polynomial in m variables and denoted $h_r(x_1, \ldots, x_m)$ (p. 72). If instead $\lambda = (1, \ldots, 1)$ has r parts, all equal to 1, then $s_{\lambda,m}$ is the sum of all products of r distinct variables x_1, \ldots, x_m ; this polynomial is called the *r*th elementary symmetric polynomial in m variables and denoted $e_r(x_1, \ldots, x_m)$ (p. 72). Note that this last polynomial is 0 whenever r > m.

イロン 不良 とくほう 不良 とうほう

In general there is a beautiful formula for $s_{\lambda,m}$ as the determinant of a matrix whose entries are complete (or alternatively elementary) symmetric polynomials (see p. 75), so that $s_{\lambda,m}$ is indeed symmetric; it is also homogeneous of degree equal to the sum *n* of the parts of λ . I will give an alternative proof of the symmetry of these polynomials below.

イロト イポト イヨト イヨト

First recall that if V. W are modules for a group G over the same field K, then the tensor product $V \otimes_{\kappa} W$ as a module for G via the recipe $g(v \otimes w) = gv \otimes gw$. More generally, if V, W are modules for the respective groups G, H over the same field K, then $V \otimes_{\kappa} W$ becomes a module over the direct product $G \times H$ via the recipe $(g, h)(v \otimes w) = gv \otimes hw$. (The previous recipe is just a restriction of this one to the diagonal copy of G in $G \times G$, consisting of all order pairs (q, q) with $q \in G$). It is not difficult to check that if χ_V, χ_W are the respective characters of V, W on G, H, then the character of $V \otimes_K W$ is the product $\chi_V \chi_W$, whose value at $(g, h) \in G \times H$ is just $\chi_V(g)\chi_W(h)$.

イロン イロン イヨン イヨン 三日

The notion of character extends from finite groups to $G = GL_m(\mathbb{C})$, as follows. I take the character of a representation $\pi : G \to GL_n(\mathbb{C})$ to be the function sending $g \in G$ to the trace of $\pi(g)$, as before; but it is convenient to consider only diagonal matrices g. If the diagonal entries of g are x_1, \ldots, x_m , then the trace of g on M^{λ} is easily seen by the above remarks to be the Schur polynomial $s_{\lambda,m}$ (the sum of its eigenvalues). In particular, since permuting the x_i gives another diagonal matrix similar to the first, it must have the same trace, so that $s_{\lambda,m}$ is indeed symmetric.

The subring of polynomial functions in x_1, \ldots, x_m generated by the characters $s_{\lambda,m}$ then turns out to consist precisely of the symmetric polynomials in these variables (p. 123); it is equivalent to say that the polynomials $s_{\lambda m}$ provide a basis for the symmetric polynomials in the x_i . In particular, thanks to the above remarks about tensor products, the product $s_{\lambda,m}s_{\lambda',m}$ is a nonnegative integral combination of $s_{\mu,m}$ for any partitions λ, λ' with at most m parts. There is a purely combinatorial recipe for computing the coefficients in this combination called the Littlewood-Richardson Rule, which I hope some of you will have occasion to learn in the future. There is an account of this rule in Chapter 5 of Fulton.