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I now specialize down to the case where the ring R of last time is
the complex numbers and the module M is Cm, so that the
group G = GLm(C).
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Taking R = C,M = Cm, I begin by observing that the
representations Mλ from last time are polynomial in the sense
that the formulas for the entries of π(x) in the corresponding
homomorphisms π from G to the appropriate GLn(C) are given
by polynomial functions in the entries of x ∈ G. Indeed, this is
clear for M1 = M itself; it follows for Mλ in general from the explicit
construction of this module.
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To get a picture of what a general Mλ looks like, let d ∈ G be a
diagonal matrix, say with diagonal entries d1, . . . ,dm. Then
dei = diei for the ith unit coordinate vector ei ; since d acts on a
tableau T ∈ V = Mλ by simultaneously acting on all of its entries,
one sees that if the entries of T are numbers (corresponding to
unit coordinate vectors), then dT =

∏m
i=1 dni

i T , where ni is the
number of times the integer i occurs as an entry in T . In
particular, d acts diagonally on V with eigenvalues

∏m
i=1,T d

ni,T
i as

T runs through all semistandard tableaux of shape λ with entries
in [m] (call these tableaux on [m] for short) and ni,T is the number
of times i occurs in T . Each eigenvalue da1

1 . . .dam
m occurs as

many times as there are semistandard tableaux of shape λ with
exactly ai is for all i.

Lecture 11-25: Representations of GLn(C) November 25, 2024 4 / 1



One therefore defines the Schur polynomial sλ,m in the variables
x1, . . . , xm by the formula

∑
T xT , where T runs over semistandard

tableaux of shape λ on [m]. Here xT denotes xa1
1 . . . xam

m , where T
has ai is for 1 ≤ i ≤m (p. 3). You can think of Mλ as a kind of
“country” with“cities” corresponding to tuples (a1, . . . ,am); the
“population” of the city corresponding to this tuple is the
coefficient of xa1

1 . . . xam
m in sλ,m.
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When semistandard tableaux T of shape λ on [m] are regarded
as vectors in Mλ they are called weight vectors, by virtue of
being eigenvectors for all diagonal matrices in G simultaneously;
their weights, regarded as functions on the subgroup of
diagonal matrices in G, are monomials in the diagonal entries
x1, . . . , xm of these matrices. One of these weight vectors vH ,
corresponding to the tableau H with all 1s in the first row, all 2s in
the second, and so on, is especially important: if u ∈ G is upper
triangular, then repeated use of multilinearity and the
alternating relations shows that uv is scalar multiple of v . This
vector v is called a highest weight vector, of highest weight
w = xλ1

1 . . . xλm
m , where λ1, . . . , λm are the parts of λ; here we allow

some of these parts to be 0 (but recall that the representation
Mλ = 0 if λ has more than m parts).
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The reason that the weight xλ1
1 . . . xλm

m is called “highest” is that
every other weight xµ1

1 . . . xµm
m occurring in Mλ is easily seen to

satisfy µ1 ≤ λ1, µ1 + µ2 ≤ λ1 + λ2, and so on, so that there is a
partial order on the weights occurring in Mλ such that w is the
unique maximal weight in this order. Moreover, the only
semistandard tableau of shape λ contributing the monomial w
to the Schur polynomial sλ,m is H, so that this monomial occurs
with coefficient 1 in sλ. Furthermore, one can check that the
only tableau T of shape λ with uT a scalar multiple of T for all
upper triangular matrices u is H itself, so that up to scalar
multiples vH is the only highest weight vector in Mλ.
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Now it turns out that by the general theory of finite-dimensional
modules over the (complex semisimple) Lie (or linear algebraic)
group G, any such module is a direct sum of irreducible
modules, and every irreducible module has a unique highest
weight vector up to scalar multiple. Thus the modules Mλ are all
irreducible, and in fact up to isomorphism they are the only
finite-dimensional irreducible polynomial representations of G.
Using language that I introduced in the lecture on November 1,
G has tame representation type: it has infinitely many
inequivalent irreducible(=indecomposable) modules, but these
can be parametrized in a nice way (by partitions with at most m
parts). In particular, there are only countably many of them.
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Last time I observed that there is an injective map from Mλ to a
certain polynomial ring R[X ]; since this ring is independent of λ,
one can exploit the multiplication structure on it to put a
multiplication structure on the direct sum of all Mλ. This sum turns
out to be closely connected to the geometry of a certain
quotient of G. I will return to Fulton’s book to say more about this
connection in the spring, when I treat commutative algebra. I
will also say more about multiplication of Schur functions below.
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The definition of the Schur polynomials sλ,m given above makes
no direct reference to representation theory, requiring as it does
only the definition of semistandard tableau on [m]. It turns out
that these polynomials are of considerable interest even outside
representation theory. This is primarily because they turn out to
be symmetric polynomials, remaining unchanged if the
variables x1, . . . , xm are permuted.
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For example, if λ has a single part r , then the Schur polynomial
sλ,m is the sum of all products of r not necessarily distinct
variables among x1, . . . , xm, a famous symmetric polynomial
called the rth complete symmetric polynomial in m variables
and denoted hr(x1, . . . , xm) (p. 72). If instead λ = (1, . . . ,1) has r
parts, all equal to 1, then sλ,m is the sum of all products of r
distinct variables x1, . . . , xm; this polynomial is called the rth
elementary symmetric polynomial in m variables and denoted
er(x1, . . . , xm) (p. 72). Note that this last polynomial is 0 whenever
r > m.
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In general there is a beautiful formula for sλ,m as the determinant
of a matrix whose entries are complete (or alternatively
elementary) symmetric polynomials (see p. 75), so that sλ,m is
indeed symmetric; it is also homogeneous of degree equal to
the sum n of the parts of λ. I will give an alternative proof of the
symmetry of these polynomials below.
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First recall that if V ,W are modules for a group G over the same
field K , then the tensor product V ⊗K W as a module for G via
the recipe g(v ⊗w) = gv ⊗ gw . More generally, if V ,W are
modules for the respective groups G,H over the same field K ,
then V ⊗K W becomes a module over the direct product G × H
via the recipe (g,h)(v ⊗w) = gv ⊗ hw . (The previous recipe is
just a restriction of this one to the diagonal copy of G in G ×G,
consisting of all order pairs (g,g) with g ∈ G). It is not difficult to
check that if χV , χW are the respective characters of V ,W on
G,H, then the character of V ⊗K W is the product χVχW , whose
value at (g,h) ∈ G × H is just χV (g)χW (h).
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The notion of character extends from finite groups to
G = GLm(C), as follows. I take the character of a representation
π : G→ GLn(C) to be the function sending g ∈ G to the trace of
π(g), as before; but it is convenient to consider only diagonal
matrices g. If the diagonal entries of g are x1, . . . , xm, then the
trace of g on Mλ is easily seen by the above remarks to be the
Schur polynomial sλ,m (the sum of its eigenvalues). In particular,
since permuting the xi gives another diagonal matrix similar to
the first, it must have the same trace, so that sλ,m is indeed
symmetric.
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The subring of polynomial functions in x1, . . . , xm generated by
the characters sλ.m then turns out to consist precisely of the
symmetric polynomials in these variables (p. 123); it is equivalent
to say that the polynomials sλ,m provide a basis for the symmetric
polynomials in the xi . In particular, thanks to the above remarks
about tensor products, the product sλ,msλ′,m is a nonnegative
integral combination of sµ,m for any partitions λ, λ′ with at most m
parts. There is a purely combinatorial recipe for computing the
coefficients in this combination called the Littlewood-Richardson
Rule, which I hope some of you will have occasion to learn in the
future. There is an account of this rule in Chapter 5 of Fulton.
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