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I turn now to a particular group whose representations turn out
to be particularly nice (and were historically among the first ones
studied). This is the symmetric group Sn. I will follow the
development in Chapter 7 of Fulton’s wonderful 1997 book
entitled “Young tableaux” (Cambridge University Press);
throughout I will work over the rational field Q rather than the
complex one. All references will be to Fulton’s book.
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Recall first that the conjugacy class of a permutation σ is
determined by the lengths of the cycles in its cycle
decomposition (including the 1-cycles). These form a partition
λ = (λ1, . . . , λm) of n, so that

∑
λi = n; by convention we arrange

the parts λi of λ so that λ1 ≥ λ2 ≥ . . .. I also write |λ| = n.
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Given a partition λ of n, I define a (Young) diagram of shape λ to
be a an arrangement of boxes in rows, lined up on the left, so
that the ith row of the arrangement has λi boxes (p. 1). Filling in
the boxes with the numbers 1 through n, using each number
exactly once, I get a (Young) tableau of this shape, which is
called standard if the numbers in the boxes increase across rows
and down columns (p. 2).
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Thus for example
1 2 6
3 5
4

is a standard tableau of shape (3, 2, 1). There is an obvious
action of Sn on tableaux of shape λ, obtained by permuting the
numbers in the boxes. Given such a tableau T , denote by R(T )
the subgroup of Sn consisting of permutations permuting the
elements of each row among themselves (p. 84). Then R(T ) is a
direct product of symmetric groups, one for each part of λ.
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Similarly denote by C(T ) the subgroup of permutations
preserving the columns of T . In the above example R(T ) and
C(T ) are both isomorphic to S3 × S2 × S1. Note that
R(T ) ∩ C(T ) = 1, since a permutation in the intersection cannot
move any number from its row or column in T . Given two
partitions λ = (λ1, . . . , λm) and λ′ = (λ′

1, . . . , λ
′
r) of the same

integer n, we say that λ dominates λ′ if for all i we have
i∑

j=1
λj ≥

i∑
j=1

λ′
j , defining λj = 0 if j > m and λ′

k = 0 if k > r . This is a

partial order on partitions of n. The following lemma provides the
basic tool I need.
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Lemma 1, p. 84
Let T , T ′ be tableaux of shapes λ, λ′ with |λ| = |λ′| = n. Assume
that λ does not strictly dominate λ′. Then exactly one of the
following holds.

There are two distinct integers in the same row of T ′ and the
same column of T .
λ′ = λ and there are p′ ∈ R(T ′),q ∈ C(T ) with p′ · T ′ = q · T .
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Proof.
If the first assertion fails, then the numbers in the first row of T ′ all
occur in different columns of T , so there is q1 ∈ C(T ) such that
these numbers occur in the first row of q1 · T . The numbers in the
second row of T ′ then occur in different columns of T , so also of
q1 · T , so there is q2 ∈ C(q1 · T ) = C(T ) not moving the numbers
equal to those in the first row of T ′, such that these numbers all
occur in the first two rows of q2q1 · T . Continuing in this way we
get q1, . . . ,qk ∈ C(T ) such that the numbers in the first k rows of T ′

all occur in the first k rows of qk · · ·q1 · T . Since T and qk . . .q1 · T
have shape λ, the sum of the first k parts of λ′ can be at most
the corresponding sum for λ and λ dominates λ′.
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Proof.
Since I have assumed the λ does not strictly dominate λ′, I must
have λ = λ′; taking k to be the number of rows of λ and
q = qk · · ·q1, I see that q · T and T ′ have the same numbers in
each row, so there is p′ ∈ R(T ′) with p′ · T ′ = q · T , as desired;
conversely, if such p′,q exist, then the first assertion must fail.
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I now define two total orders, one on partitions and the other on
tableaux. Given two distinct partitions λ = (λ1, . . . , λm) and
λ′ = (λ′

1, . . . , λ
′
r) I say that λ > λ′ (in the lexicographic order; see

p. 26) if λi > λ′
i , where i is the smallest index for which λi ̸= λ′

i .
Given tableaux T , T ′ of respective shapes λ, λ′ write T > T ′ if
either λ > λ′ in the lexicographic order, or λ = λ′ and the largest
number occurring in a different position in T and T ′ occurs either
in a column further to the left in T or in the same column but
lower down (p. 84). Then for T standard, if p ∈ R(T ),q ∈ C(T ),
then p · T ≥ T ,q · T ≤ T ; indeed, the largest number in T moved
by p is must be moved to the left, while the largest number
moved by q must be moved up (see p. 85).
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It follows that if T , T ′ are standard tableaux with T ′ > T then there
is a pair of numbers in the same row of T ′ and the same column
of T (Corollary, p. 85). For otherwise I would be in the second
case of Lemma 1, so that p′ · T ′ = q · T for some p′,q; but this
forces q · T ≤ T ,p′ · T ′ ≥ T ′ by the above observation, a
contradiction.
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I now define a tabloid {T} to be an equivalence class of
tableaux, two tableaux being equivalent if they have the same
shape and the same numbers in each row (p. 85). Thus the
tableaux represented by

1 4 7
3 6
2 5

and
4 7 1
6 3
2 5

are the same when regarded as tabloids. Clearly {T} = {T ′} if
and only if T ′ = p · T for some p ∈ R(T ).
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Sn acts on tabloids by the recipe σ · {T} = {σ · T}; thus the space
Mλ spanned by all tabloids of shape λ is an Sn-module. For a
tableau T , define vT =

∑
σ∈C(T )

ϵσσ{T} = bT{T}, where

bT =
∑

σ∈C(T )
ϵσσ ∈ QSn, the rational group algebra of Sn, where ϵσ is

the sign of σ (1 if σ is an even permutation, −1 otherwise). Clearly
vT ̸= 0, since R(T ) ∩ C(T ) = 1, whence
bT vT = b2

T {T} = #C(T )vT ̸= 0, where #C(T ) denotes the
cardinality of C(T ). We have σ · vT = vσ·T for σ ∈ Sn and all
tableaux T . Now finally I define the Specht module Sλ to be the
QSn-module spanned by the vT as T runs through tableaux of
shape λ (p. 87).
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Irreducibility of the Sλ will follow from the following lemma.

Lemma 2, p. 86
Let T , T ′ be tableaux of respective shapes λ, λ′ and assume that
λ does not dominate λ′. If there is a pair of integers in the same
row of T ′ and column of T , then bT · {T ′} = 0. Otherwise we have
bT · {T ′} = ±vT .
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Proof.
If there is such a pair of integers, let t be the transposition that
swaps them. Then bT t = −bT , since t ∈ C(T ), but t · {T ′} = {T ′},
since t ∈ R(T ′). It follows that bT · {T ′} = −bT · {T ′} = 0. If there is
no such pair, choose p′ and q as in the second case of Lemma
1. Then
bT ·{T ′} = bT ·{p′ ·T ′} = bT ·{q·T} = bT ·q·{T} = ϵqbT ·{T} = ϵq ·vT .

By the remark right after Lemma 1, I deduce that if T , T ′ are
standard tableaux with T ′ > T then bT · {T ′} = 0 (Corollary, p. 87).
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