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I digress to study the representations of a particular family of
groups, which I privately call the Clifford groups, in detail. This will
lead to an important class of algebras universally called
(complex) Clifford algebras, which are of considerable
independent interest and importance. I will also describe real
Clifford algebras, which exhibit an even richer structure. This
material can all be found on the Wikipedia page “Clifford
algebras”.
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I begin with a group that I will denote by Gn. It is generated by n
elements a1, . . . ,an, with the defining relations a2

i = ε, ε2 = 1 and
aiaj = εajai for i 6= j. Note that if n = 2 this is just the group of
quaternion units, generated by the quaternions i and j, with
ε = −1. In general there does not seem to be any standard
name for this group in the literature; the term “Clifford” group is
probably as good as any other. Gn has order 2n+1 and consists
of all products aε1

1 · · ·a
εn
n and εaε1

1 · · ·a
εn
n , where each εi is 0 or 1.

The center Zn of Gn has order 2 and is generated by ε if n is even;
it is generated by ε and zn = a1 . . .an if n is odd. More precisely,
Zn is cyclic of order 4 if n ≡ 1 mod 4; it is isomorphic to the Klein
four-group if n ≡ 3 mod 4. For any g ∈ Gn, the conjugacy class
of g consists of g alone if g ∈ Zn and of g and gε if g /∈ Zn. Thus
Gn has 2n + 1 conjugacy classes if n is even and 2n + 2
conjugacy classes if n is odd.
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I first dispose of the boring representations of Gn; that is, those of
dimension 1. These are the ones for which ε acts trivially. The
quotient Gn/〈ε〉 of Gn by the subgroup generated by ε is the
direct product of n copies of the cyclic group Z2; accordingly
Gn has 2n one-dimensional representations.
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There is room for only one more irreducible representation of Gn
if n is even, necessarily of degree 2

n
2 , since the sum of the

squares of the irreducible degrees is then 2n + 2n = 2n+1. the
order of Gn. If n is odd, there are two more irreducible
representations; since each has degree a power of 2 and the
sum of the squares of the degrees must again be 2n+1, both must
have degree 2

n−1
2 . In all of these cases ε ∈ Gn acts by a scalar

square root of 1, so it must act by −1.
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The complex Clifford algebra Cn is defined to be the quotient of
the group algebra CGn by the ideal generated by the central
element ε+ 1. This is a single matrix algebra M n

2
(C) if n is even

and the direct sum M n−1
2
(C)⊕M n−1

2
(C) if n is odd. It can also be

thought of the algebra over C generated by a1, . . . ,an with the
defining relations a2

i = −1,aiaj = −ajai for i 6= j. Sometimes one
takes a2

i to be 1 rather than −1; this leads to an isomorphic
algebra.
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If n is odd, there is a very simple relationship between the two
irreducible representations of degree 2

n−1
2 . If n ≡ 3 mod 4, then

Gn is isomorphic to the direct product of Gn−1 and the cyclic
subgroup 〈zn〉 generated by zn, which has order 2. Starting from
the unique irreducible representation Vn−1 of Gn−1 of degree
larger than one, we extend it to Gn by having zn act either
trivially or by −1, thus obtaining the two representations Vn,V ′n of
Gn of degree larger than one. If instead n ≡ 1 mod 4, then
z2

n = ε, so zn has order 4. Starting with Vn−1 as before, extend it to
Gn by having zn act by either ±

√
−1 ∈ C, once again obtaining

Vn and V ′n.
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If n is even, then the representation Vn turns out to decompose
over Gn−1 as the sum of the two representations Vn−1,V ′n−1. I will
show later that any representation of a subgroup H of a group G
can be “induced” to a larger representation of G; inducing
either Vn−1 or V ′n−1 from Gn−1 to Gn, one realizes the
representation Vn. The character table of Gn is easy to
compute, since any non-central g ∈ Gn is conjugate to εg,
which acts by the negative of the action of g on any irreducible
representation of degree larger than one, whence its character
on that representation is 0.
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One gets even more interesting behavior by replacing the
basefield C with R. In general, the real group algebra RG of a
finite group G is not a direct sum of matrix rings over R; instead it
is a sum of matrix rings over (any or all) of R,C, and the
quaternions H. For example, defining the real Clifford algebra Rn
by the same generators and relations as above, we see that R2
satisfies the same relations as H, so is isomorphic to it. In general
Rn is either a single matrix algebra or the sum of two isomorphic
ones. Its structure (that is, whether there are one or two matrix
algebras and whether they are real, complex, or quaternionic) is
periodic with period eight; all of this is related to a topological
phenomenon called Bott periodicity.
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The real Clifford algebra Cn is not a group under multiplication,
but it has a large subset which is a group, isomorphic to the
simply connected double cover Pin(n,R) of the orthogonal
group O(n,R); similarly there is a simply connected double cover
of SO(n,R) called Spin(n,R). You may see these groups later in a
manifolds course, but you saw it here first. These groups have
complex analogues denotes Pin(n,C) and Spin(n,C).
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Finally, I mention the composition problem, which asks for which
positive integers n there exist real numbers bijk for 1 ≤ i, j, k ≤ n
such that for all x1, . . . , xn, y1, . . . yn ∈ R such that if we set
zi =

∑
j,k bijkxjyk then we have an identity (

∑
i x2

i )(
∑

i y2
i ) =

∑
i z2

i .
It turns out that such an identity exists for exactly four values of n,
namely 1,2,4, and 8. The identity for n = 1 is trivial. For n = 2 it
comes to the multiplicativity of the complex norm; likewise for
n = 4 it comes down to the multiplicativity of a norm, this time
the quaternionic norm. For n = 8 there is another set of numbers
called the octonions admitting a multiplicative real-valued
norm. The octonions are even worse behaved than the
quaternions: in addition to being noncommutative they are not
even associative under multiplication. This roughly explains why
one does not just iterate the procedure to get the quaternions
from the complex numbers ad infinitum.
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That the composition problem has no solution for any n other
than 1, 2, 4, or 8 comes down to a calculation using the
representation theory of Rn.
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