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Last time I showed that there are exactly p equivalence classes
of indecomposable representations of the cyclic group Cp of
prime order p over any field k of characteristic p; these
correspond to the Jordan blocks of size at most p × p and
eigenvalue 1. One describes this situation by saying that the
cyclic group Cp has finite representation type over any field of
characteristic p. Indecomposable representations of the infinite
cyclic group Z over any field k correspond up to equivalence to
companion matrices of powers of irreducible polynomials other
than x over k ; thus there are infinitely many of them, but they
can be parametrized in a nice way. One says that Z has tame
representation type.

Lecture 11-1: Irreducible and indecomposable representationsNovember 1, 2024 2 / 1



In stark contrast, indecomposable representations of the Klein
four-group C2 ×C2 in characteristic 2 do not admit any
reasonable parametrization; entire Ph.D. theses and papers are
written on such representations. We say that C2 ×C2 has wild
representation type (in characteristic 2). We can get a better
handle on representations if we replace indecomposability by a
stronger hypothesis.

Definition, p. 847
The representation Vof G is called irreducible or simple if it does
not admit any proper subrepresentation.
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For example, any one-dimensional representation is trivially
irreducible. For any irreducible polynomial p over a field k , we
have already observed that the quotient R = k[x ]/(p) does not
admit any proper subspace stable under multiplication by x ,
since any such subspace would correspond to a proper ideal of
R as a ring. Thus in particular the representation Q[x ]/(Φn) of the
cyclic group Cn over Q is irreducible, where Φn is the nth
cyclotomic polynomial, since I will define this polynomial next
term and show that it is irreducible. On the other hand, any
representation of Cn over a field k for which the polynomial
xn − 1 is a product of distinct linear factors is a direct sum of
one-dimensional subrepresentations, so that the only irreducible
representations of Cn over any such k are one-dimensional, with
the generator g of Cn acting by an nth root of 1 in k .
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More generally, one has

Theorem; see Exercise 19, p. 854
Let A be a finite abelian group of order n and k a field with n
distinct nth roots of 1 (so that in particular the characteristic of k
does not divide n). Then any representation V of A is a direct
sum of one-dimensional representations, so that every
irreducible representation is one-dimensional. There are n
inequivalent irreducible representations of A.
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Proof.

We know that A is isomorphic to a direct sum
m⊕

i=1
Cni of cyclic

groups with orders ni dividing n. Letting gi be a generator of Cni ,
we have seen that V is the direct sum of eigenspaces E of gi ,
each with eigenvalue ei , an nith root of 1 in k . Since A is abelian,
every eigenspace E is stable under the action of the generators
gj with j 6= i of the other cyclic factors Cnj of A. By induction on
the number of cyclic factors, we deduce that V is the direct sum
of one-dimensional simultaneous eigenspaces of all generators
gi . In particular all irreducible representations are
one-dimensional. Conversely, given a one-dimensional space V
over k , we make it into a representation by decreeing that each
generator gi act by a scalar equal to a suitable ei ; as there ni
choices for each ei and the product of the ni is n, the result
follows.
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In fact the set Â of equivalence classes of irreducible
representations of A over k has a group structure and Â ∼= A (cf.
Exercise 16, p. 853). This holds because such classes correspond
to homomorphisms from A to GL1(k) = k∗ and the product π1π2
of two such homomorphisms π1, π2 (sending a ∈ A to π(1)π2(a)) is
another homomorphism. Since (as noted above) any π sends a
generator gi of a cyclic factor of A to an nith root of 1 in k , the
isomorphism follows. Note however that there is no canonical
homomorphism from Â to A, since the isomorphism between
these groups depends on the choices of a particular roots of 1 in
k .
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Of course most finite groups G are nonabelian; accordingly
most irreducible representations of such groups have degree
larger than one. The following key result reduces the study of
such representations to the irreducible case, under a mild (and
by now familiar) restriction on k .

Maschke’s Theorem, p. 849
If the characteristic of k does not divide the order n of G, then
any representation V of G over k is semisimple; that is, it is the
direct sum of irreducible subrepresentations.
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Proof.
There is nothing to prove if V is irreducible, so assume not and let
W be a proper subrepresentation. It is enough to show that
there is another subrepresentation W ′ complementary to W in
V , so that V is the direct sum of W and W ′, for then by induction
on dimension both W and W ′ are direct sums of irreducible
subrepresentations, whence so is V . To construct W ′, let f be any
linear projection of V onto W (so that f maps V onto W and the
restriction of f to W is the identity). Set f̃ (v) = 1

n
∑

g∈G
g−1f (gv).

Then for h ∈ G we have h−1f̃ (hv) = 1
n

∑
g∈G

h−1g−1f (ghv) = f̃ (v), so

that f̃ is a G-module homomorphism from V to W , which is the
identity on W , since f is. The kernel of f̃ is then a submodule W ′

intersecting W trivially; computing its dimension we see that V is
the direct sum of W and W ′, as desired.
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The technique of this proof is called averaging over G and
occurs frequently in the study of finite (or more generally
compact) groups. We now study irreducible modules in a rather
roundabout way, first investigating homomorphisms between
them rather than the modules themselves. Note first that the set
homG(M,M′) of G-module homomorphisms from one module M
to another one M′ is clearly a vector space over the basefield k .
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Theorem: Schur’s Lemma; see Exercise 18, p. 853
Assume that k is algebraically closed. Let V ,W be irreducible
G-modules. If V is not isomorphic to W , then homG(V ,W ) = 0. If
V is isomorphic to W , then homG(V ,W ) ∼= k .
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Proof.
The kernel and image of any G-module homomorphism are
both G-submodules, so if V 6∼= W , then any module
homomorphism from V to W necessarily has kernel V and image
0, by irreducibility. If V ∼= W let f be an isomorphism and g a
homomorphism between them. The homomorphism f−1g from V
to V , as a linear map, must have an eigenvalue λ; but then its
λ-eigenspace, being the kernel of g − λf , must be a nonzero
G-submodule of V and thus all of V . Hence g = λf , as
claimed.

This result says in particular that the only linear maps from V to
itself commuting with the action of G are the scalars.
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We now introduce a ring R such that modules over this ring (for
fixed basefield k) are the same things as G-modules.

Definition, p. 840
Given k and G, the group algebra kG consists of all formal linear
combinations

∑
g∈G

kgg of elements of G with coefficients in k . The

group elements g are regarded as linearly independent, so that
two such combinations agree if and only if their coefficients
match up term by term. We add two such combinations and
multiply by elements of k in the obvious way. We take the
product

∑
g∈G

kgg
∑

g∈G
`gg of two elements of kG to be∑

g,h∈G
kg`hgh, collecting coefficients in this last sum to make the

group elements appearing in it distinct.
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Given any G-module V over k we then make V into a
kG-module by decreeing that (

∑
g∈G

kgg)v =
∑

g∈G
kg(gv).

Equivalently, any homomorphism π : G→ GL(V ) extends
uniquely to a k-algebra homomorphism from kG to the ring
M(V ) of all linear transformations from V to itself, where V is a
finite-dimensional vector space over k . In particular, kG itself,
clearly being a kG-module, is also a G-module. We call it the
regular representation of G.
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