Lecture 10-4: Free groups and the Nielsen-Schreier Theorem

October 4, 2024

Lecture 10-4: Free groups and the Nielsen-

< ∃⇒

ヘロト ヘロト ヘヨト

I will wrap up group theory with a brief treatment of free groups. Part of this material is in Dummit and Foote (section 6.3, pages 215-220).

< 3 >

Recall from linear algebra that every vector space over a field has a basis, which is such that every vector in the space is a unique linear combination of basis vectors. There is an analogous construction in group theory, this time producing only certain special groups rather than all of them. Given a group Gand a subset *S* of *G* such that $s^{-1} \notin S$ whenever $s \in S$, one says that G is free on S or freely generated by S if for every $g \in G$ there are unique elements s_1, \ldots, s_n such that $g = s_1 \ldots s_n$, where for each *i* either $s_i \in S$ or $s_i^{-1} \in S$ and no $s \in S$ appears next to s^{-1} among the s_i . (In particular, the identity element 1 is uniquely realized as the empty product of elements of S). For example, if $G = \langle g \rangle$ is cyclic, then G is freely generated by $S = \{g\}$. Given any abstract set S, there is a group F(S) freely generated by S. Start with the set of strings $s_1 \dots, s_n$ of symbols (called words) such that for all *i* either $s_i \in S$ or s_i is the formal symbol s^{-1} for some $s \in S$.

Define the word $s = s_1 \dots s_n$ to be reduced if no $s \in S$ appears next to s^{-1} among the s_i . Call *n* the length of *s*. Let F(S) consist of all reduced strings. Define a product on this set by decreeing that $(s_1 \dots s_n)(t_1 \dots t_m)$ is the unique string obtained from the concatenation $s_1 \dots s_n t_1 \dots t_m$ by deleting pairs of successive terms ss^{-1} or $s^{-1}s$ for $s \in S$ until the resulting string is reduced. I will take it as clear that this reduced string is unique (but see pages 216 and 217 for a proof of this). Then it is clear that this product is associative and has the empty string as the multiplicative identity; defining $(s_1 \dots s_n)^{-1} = s_n^{-1} \dots s_1^{-1}$ (where of course one takes $(s^{-1})^{-1}$ to be s if $s \in S$ we see that F(S) is closed under inverses, so is a group. We call S a free basis of F(S); the cardinality of S is called the rank of F(S) (p. 218). We will see later that the rank of a free group is well defined.

Any map π from the set *S* into a group *H* extends uniquely to a homomorphism from *F*(*S*) to *H*, sending the word $s_1 \dots s_n$ to the product $\pi(s_1) \dots \pi(s_n)$, where $\pi(s^{-1})$ is taken to be $\pi(s)^{-1}$ (Theorem 17, p. 217). In particular, if *G* is generated by a subset *S* (so that any $g \in G$ is a product of elements of *S* and their inverses) then there is a surjective homomorphism from the free group *F*(*S*) onto *G*.

(D) (A) (A) (A) (A) (A)

Now any subspace S of a vector space V over a field has a basis which can be enlarged to a basis of V. Remarkably (and for totally different reasons) any subgroup of a free group F likewise admits a free basis, though this basis does not in general sit inside any basis of F.

Nielsen-Schreier Theorem: Theorem 19, p. 218

Any subgroup of a free group is free.

This argument is not in the text; see for example Schaum's Outline on group theory. Let G be free on the set S. Begin by fixing a total order < on the elements of S; extend it to the disjoint union of S and $S^{-1} = \{s^{-1} : s \in S\}$ by decreeing that $s < s^{-1}$ for $s \in S, s < t^{-1}, s^{-1} < t, s^{-1} < t^{-1}$ if and only if s < t, for $s, t \in S$. Extend < to a total order on all reduced words by decreeing first that $s = s_1 \dots s_m < t = t_1 \dots t_n$ if either m < n or m = n and the least index *i* with $s_i \neq t_i$ has $s_i < t_i$. Given a subgroup *H* of *G* and a right coset Hx of H in G, denote the unique <-smallest word in Hx by \bar{x} . The set T of all \bar{x} as Hx runs through the right cosets of H is called a Schreier transversal: it consists of exactly one element of every right coset of H in G and if a reduced word $s_1 \dots s_n$ lies in T then so too does every initial subword $s_1 \dots s_i$ for $i \leq n$, by the way \bar{x} was chosen. In particular the empty word 1 is the unique representative of 1H in T.

э

ヘロト ヘヨト ヘヨト ヘヨト

For $s \in S, g \in G$ write $h_{q,s} = \overline{gs(gs)}^{-1} \in H$, so that $\overline{gs} = h_{q,s}(\overline{gs})$. One checks immediately that $h_{a,s}$ is unchanged if g is replaced by another element hg in its right coset Hg, so that $h_{q,s} = h_{\overline{a},s}$ for all $g \in G$. Also if we define $h_{g,s^{-1}}$ for $s \in S$ in the same way as $h_{g,s}$, so that $h_{a,s^{-1}} = \overline{gs^{-1}(gs^{-1})}^{-1}$, then one checks that $h_{g,s^{-1}} = h_{g,s^{-1}s}^{-1}$. Thus the $h_{g,s}$ and $h_{g,s^{-1}}$ generate the same group as the $h_{g,s}$ alone. Also $h_{g,s} = 1$ if and only if $gs \in T$, and similarly for $h_{a,s-1}$. Now I claim that the $h_{a,s}$ different from 1 as s runs over S and t over T freely generate H.

イロト イポト イヨト イヨト 三日

Indeed, given any product $h = s_1 \dots s_n$ lying in H with $s_i \in S$ or $s_i^{-1} \in S$, we have $\overline{s_1 \dots s_n} = 1$. Repeatedly using the definition of the $h_{g,s}$, we first write $\overline{s_1 \dots s_{n-1}} s_n$ as $h_{s_1 \dots s_{n-1}, s_n} \overline{s_1 \dots s_n} = h_{s_1 \dots s_{n-1}, s_n}$, then write $\overline{s_1 \dots s_{n-2}} s_{n-1} s_n$ as a multiple of $\overline{s_1 \dots s_{n-1}} s_n$, and so on, eventually realizing h as a product of various terms $h_{a,s}$ and $h_{a,t-1}$. A typical $h_{t,s} \neq 1$ takes the form $t_1 \dots t_m s s_n^{-1} \dots s_1^{-1}$, where $t_1 \dots t_m$ is a reduced word for $t \in T$ and $s_1 \dots s_n$ is a reduced word for ts. We cannot have $t_m = s^{-1}$, lest $ts = t_1 \dots t_m$, lie in T, which would force $h_{t,s} = 1$; similarly we cannot have $s = s_n$. Hence the word $t_1 \dots t_m s s_n^{-1} \dots s_1^{-1}$ is reduced, as is its inverse.

Consider the product ww' of two words $w = t_1 \dots t_m s s_n^{-1} \dots s_1^{-1}$, $w' = t_1 \dots t_p t u_1^{-1} \dots u_1^{-1} \dots u_q^{-1}$. If the product $s_n^{-1} \dots s_1^{-1}$ wipes out the $t_1 \dots t_p t$, then $t_1 \dots t_p t$ to coincide with an initial subword $s_1 \dots s_i$ of $s_1 \dots s_n$ and so lies in T, forcing w' = 1. If $s_n^{-1} \dots s_1^{-1}$ alone does not wipe out $t_1 \dots t_p t$ but $s s_n^{-1} \dots s_1^{-1}$ does, then $w' = w^{-1}$. Thus any nonempty reduced product of nonidentity $h_{s,t}$ and $h_{s,t}^{-1}$ terms is different from 1 (its final subword is the same as that of its last term), and the nonidentity $h_{s,t}$ freely generate H, as claimed.

<ロ> (四) (四) (三) (三) (三) (三)

We can make this result more precise by determining which generators $h_{t,s}$ are equal to 1. We have $h_{t,s} = 1$ if and only if $ts \in T$. For every nonidentity element $x \in T$, the reduced word for t either ends in either s or s^{-1} , for some $s \in S$. If it ends in s, then $xs^{-1} \in T$ and the element $h_{xs^{-1},s} = 1$; if it ends in s^{-1} , then $xs \in T$ and $h_{t,s} = 1$. These are the only $h_{t,s}$ equal to 1. So in particular if Sand T are both finite, say equal to n and m, respectively, then of the mn elements $h_{s,t}$ for $s \in S$, $t \in T$, exactly m - 1 are equal to 1.

Corollary

A subgroup of index *m* of a free group of rank *n* is free of rank nm - m + 1.

In particular, free groups of finite rank can admit free subgroups of larger rank, or even infinite rank. For example, starting out with the free group *G* of rank two generated by *x*, *y* and moding out by the normal subgroup *H* generated by all conjugates of *x*, we find that the quotient group is the free group on one generator *y*. Here the Schreier transversal constructed in the above proof is $\{y^n : n \in \mathbb{Z}\}$ (taking y < x); all nonidentity elements here end with *y*, so the free generators of *H* are the conjugates $y^n xy$, y^{-n} as *n* runs over \mathbb{Z} and *H* has infinite rank.

More generally, given a free group G on generators $s_1, s_2 \dots$ and various words w_1, w_2, \ldots on these generators, the quotient G/Nof G by the subgroup N generated by all conjugates of the w_i is normal in G; it is said to be presented by the relations $w_i = 1$ (see p. 218); note that any homomorphism π from G to another group H with all w_i lie in the kernel uniquely induces a homomorphism from G/N to H. We have seen above that any finitely generated group is a homomorphic image of a free group of finite rank; the above results show that a subgroup with index *m* of a group generated by *n* elements is generated by at most nm + 1 - m elements. A subgroup of a finitely generated group of infinite index need not be finitely generated.