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So far I have considered modules over very general rings. Now I
will change the focus to modules over very particular rings,
namely principal ideal domains, and show how finitely
generated modules over them admit a very simple and elegant
classification. In what follows I will cite some facts about
principal ideal domains which I hope are familiar to most of you;
in any event I will give references to the text.
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Recall first that a principal ideal domain, or PID, is an integral
domain R such that every ideal is principal, that is, generated by
a single element (Definition, p. 279). The two most familiar
examples are Z and the ring k[x ] of polynomials inone variable
over a field k . In general, one says that a nonzero x ∈ R is prime if
given any factorization x = yz either y or z is a unit in R (has a
multiplicative inverse); see the Definition on p. 284. I will assume
that you have seen the result that every PID R is a unique
factorization domain, or UFD; that is, given a nonzero nonunit
x ∈ R one can write x = p1 . . .pm as a finite product of primes pi
and that given any two such products x = p1 . . .pm = q1 . . .qn
one has m = n and the qi agree with the pi up to reordering and
multiplying by units (Theorem 14, p. 287). Also any two nonzero
elements z, y of R have greatest common divisor z = ax + by for
some a,b ∈ R, so that the ideal (z) generated by z is the same
as the ideal (x , y) generated by x and y (Proposition 6, p. 280).
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Before stating the main result I need to generalize a piece of
terminology used earlier for free modules. Given any integral
domain I (not necessarily a PID), the rank of an I-module M is the
maximum number n of linearly independent elements m1, . . . ,mn

of M, so that
m∑

j=1
ijmj = 0 for ij ∈ I only if ij = 0 for all j (p. 460). By

the same argument as for vector spaces over a field, any two
maximal linearly independent subsets of M have the same
cardinality I showed in the lecture on October 9 that a a free
module of rank n over an integral domain continues to have
rank n in this new sense (Proposition 3, p. 459).
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Now let R be a PID. The main classification result follows from

Theorem 4, p. 460
Given any submodule N of M = Rn, there is a basis y1, . . . , yn of M
and a1 . . . ,am ∈ R such that m ≤ n,a1|a2| · · · |am, and
a1y1, . . . ,amym is a basis of N. In particular, N is free of rank at
most n.
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Proof.
Following the text, I argue by induction on the rank m of N. If
m = 0 then we must have N = 0 since given a nonzero n ∈ N, the
only r ∈ R with rn = 0 is r = 0; so the result is clear. In general, for
every R-homomorphism ϕ ∈ homR(M,R), the image ϕ(N) is an
ideal, which must be principal; say ϕ(N) = (aϕ) for aϕ ∈ R. If
N ̸= 0, then by looking at the projections of N to the coordinates
of R one sees that a = aϕ ̸= 0 for some ϕ. Write a = p1 . . . ,pm
with the pi prime in R.
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Proof.
Then a has only finitely many factors in R, up to multiplication by
units, namely the products of some of the pi . Equivalently, there
are only finitely many ideals of R containing (a). It follows that
the set Σ of all ideals (aϕ) as ϕ runs through homR(M,R) has a
nonzero element not contained in any other, say (aν) = (a1);
one also has a1 = ν(y) for some y ∈ N. Next I claim that a1
divides ϕ(y) for all ϕ ∈ homR(M,R). Indeed, if there is ϕ with a1 not
dividing ϕ(y), then the greatest common divisor d of a1 and ϕ(y)
generates a strictly larger ideal than (a1). Writing
d = aa1 + bϕ(y), one finds that the homomorphism ψ = aν + bϕ
takes the value d at y , whence the corresponding ideal (aψ) is
larger than (a1), a contradiction. In particular, looking at the
coordinate projections, we see that we must have
y = (c1, . . . ,cn) ∈ M with ci = a1bi for some bi ∈ R. Setting
y1 = (b1, . . . ,bn) we get ν(y1) = 1.
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Proof.
Given m ∈ M, setting a = ν(m), one has m = ay1 + m1, where
m1 ∈ ker ν. Hence M is the sum of Ry1 and ker ν; it is easy to see
that this sum is direct. Similarly N is the direct sum of Ra1y1 and
N ∩ ker ν. Thanks to the directness of these sums, the rank of
(N ∩ ker ν) ⊂ M is less than that of N, so by inductive hypothesis it
has a basis which extends to a basis of M. Adding ay1 to this
basis, we get a basis of N. I have shown in particular that every
submodule of a free R-module of finite rank n is itself free of rank
at most n; in particular, ker ν is also free over R.
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Proof.
Now the induction hypothesis applies again to N ∩ ker ν ⊂ ker ν. It
yields a basis a2y2, . . .amym of N ∩ ker ν such that y2, . . . , yn is a
basis of ker ν for some n ≥ m and a2, . . . ,am ∈ R satisfy a2| · · · |am.
Then y1, . . . , yn is a basis of M and a1y1, . . . ,amym is a basis of N; it
only remains to show that a1|a2. Define a homomorphism
ϕ : M → R via ϕ(

∑
riy1) = r1 + r2. Since a1y1,a2y2 ∈ N, we have

(a1) ∈ ϕ(N),a2 ∈ ϕ(N). Since (a1) is maximal among all ideals
ψ(N) as ψ ranges over homR(M,R), we must have
ψ(N) = (a1),a2 ∈ (a1), and a1|a2, as desired.
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Now I am finally ready to state the classification theorem.

Theorem 5 (1), p. 462
Any finitely generated module M over a PID R is isomorphic to a
direct sum Rr ⊕ R/(a1)⊕ ·R/(am) for some nonzero a1, . . . ,am ∈ R
with a1| · · · |am.

This follows at once from the preceding result since if M is
generated by n elements we must have M ∼= Rn/N for some
submodule N. In particular, observe that if M is generated by n
elements, then in the statement of the theorem we must have
r + m ≤ n. Note also that a finitely generated R-module M is
projective if and only if it is free, or if and only if it is torsion-free in
the sense that rm = 0 for r ∈ R,m ∈ M if and only if r = 0 or m = 0.
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Actually there are two versions of the classification theorem; the
one just given is called the invariant factor form, with the ai
being the invariant factors. To state the other version, I need a
couple of simple facts about general commutative rings R. Let
I, J be comaximal ideals in such a ring, so that by definition the
sum I + J is all of R. Then one has the Chinese Remainder
Theorem (see p. 246), which states that the intersection IJ = I ∩ J
and the quotient R/(I ∩ J) is isomorphic to the direct sum
R/I ⊕ R/J.

Lecture 10-25: Finitely generated modules over principal ideal domainsOctober 25, 2024 11 / 1



To prove the first assertion, note first that IJ ⊂ I ∩ J by definition;
conversely, if x ∈ I ∩ J and i ∈ I, j ∈ J satisfy i + j = 1 then
x = ix + jx = ix + xj ∈ IJ. To prove the second assertion define
ϕ : R → R/I ⊕ R/J via ϕ(r) = (r + I, r + J). Clearly the kernel of ϕ is
I ∩ J = IJ; to see that its image is all of R/I ⊕ R/J, again choose
i ∈ I, j ∈ J with i + j = 1. Then i + J = 1+ J, j + I = 1+ I, so the image
of ϕ contains (1, 0) and (0, 1) and thus the entire direct sum.
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By repeatedly applying this theorem, one sees that if
r = pn1

1 . . .pnm
m with the pi distinct primes in R, then

R/(r) ∼= ⊕m
i=1R/(pn1

i ) (see p. 464).

Theorem 6, p. 464
Any finitely generated R=module M is isomorphic to a direct sum
Rr ⊕ R/(pn1

1 )⊕ · · · ⊕ R/(pnm
m ), where the pi are (not necessarily

distinct) primes in R.

This follows at once from the previous theorem and the Chinese
Remainder Theorem, writing each invariant factor ai as a
product of prime powers in R. This called the elementary divisor
form or the primary decomposition (of M); the prime powers pni

i
are the elementary divisors. Notice that there is no bound on the
number m of factors required, even given the number of n of
generators of M, since each quotient R/(ai) in the invariant
factor form might be the sum of several quotients R/(pni

i ).
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Even more is true:

Theorem 9, p. 466

The invariant factors ai and elementary divisors pni
i of a finitely

generated module M are unique up to multiplication by units;
also any two invariant factor or elementary divisor
decompositions of M involve the same number r of copies of R.

Given M, denote by Tor(M) its torsion submodule (p. 459),
consisting of all m ∈ M such that rm = 0 for some nonzero r ∈ R. It
is easily checked that this is indeed a submodule and is the sum
of the proper quotients of R in any invariant factor or elementary
divisor decomposition of M. Thus M/Tor(M) is free of rank r equal
to the number of copies of R in such a decomposition; since the
rank of a free R-module is uniquely determined, so too is r .
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I will prove the remaining uniqueness assertion only for the
primary decomposition, leaving the other case as an exercise
(or you can consult the proof in the text). For each fixed prime
p ∈ R and nonnegative integer m it suffices to show that the
number of factors in M of the form R/(pm) for for a fixed prime
power pm occurring in any primary decomposition depends only
on M; in turn for this it suffices to show that the number k of
factors R/(pn) for some n ≥ m depends only on M. Letting
T = Tor(M), we note as a simple consequence of the Chinese
Remainder Theorem that for any quotient Q = R/(qr) of R with q
prime is such that pmQ/pm+1Q = 0 if q is not a unit multiple of p,
or if q is a unit multiple of p and r ≤ m, while if q is a unit multiple
of p and r > m, we have pmQ/pm+1Q ∼= R/(p). Hence
pmT/pm+1T is a free R/(p)-module of rank equal to the number k
defined above, and this number is indeed determined by M.
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