Lecture 10-23: Ext groups and module extensions

October 23, 2024

Lecture 10-23: Ext groups and module exte

ъ

I will show that Ext groups are well defined (independent of the choice of projective resolution) and derive some long exact sequences.

< ∃⇒

Recall the setup from last time: we have projective resolutions $\{P_i\}, \{P'_i\}$ of the *R*-modules *A* and *A'*, respectively, together with a map $f : A \to A'$. Denote the boundary map from P_n to P_{n-1} by d_n and the map from P_0 to *A* by d_0 ; similarly denote the boundary map from P'_n to P'_{n+1} by d'_n and the map from P'_0 to *A'* by d'_0 . Last time we constructed maps $f_n : P_n \to P'_n$ such that $d'_n f_n = f_{n-1}d_n$.

(D) (A) (A) (A) (A) (A)

We first prove

Proposition (p. 782)

With notation as above, the induced maps $\phi_{\Omega} : \operatorname{Ext}_{R}^{n}(A', D) \to \operatorname{Ext}_{R}^{n}(A, D)$ depend only on f, not on the choice of lifts f_{Ω} used to define these maps.

イロト イポト イヨト イヨトー

Proof.

For this it is enough to show that if f is the zero map, then the ϕ_n are all zero as well. If f = 0 then commutativity of the diagram shows that f_0 maps P_0 into the kernel of d'_0 ; since d'_1 maps P'_1 onto this kernel, projectivity shows that there is a map $s_0 : P_0 \rightarrow P'_1$ lifting f_0 . Then $d'_1(f_1 - s_0d_1) = d'_1f_1 - f_0d_1 = 0$, so that $f_1 - s_0d_1$ maps P_1 into the kernel of d'_1 , which is the same as the image of d'_2 . By projectivity there is a map $s_1 : P_1 \rightarrow P'_2$ with $f_1 = d'_2s_1 + s_0d_1$. Continuing in this way, we define homomorphisms $s_n : P_n \rightarrow P'_{n+1}$ such that $f_n = d'_{n+1}s_n + s_{n-1}d_n$.

ヘロン 人間 とくほ とくほ とう

Proof.

The collection of maps $\{s_n\}$ is called a chain homotopy between the chain homomorphism given by the f_n and the zero homomorphism. In the presence of such a chain homotopy relative to a map $f : \mathcal{C} \to \mathcal{C}'$ between chain complexes $\mathcal{C}, \mathcal{C}'$, one checks that the induced map $f : H_n \to H'_n$ from any homology group of \mathcal{C} to the corresponding one for \mathcal{C}' is 0. A similar result holds for cochain complexes. In the present situation, taking homomorphisms into D, we get the cochain complex used to compute the ϕ_n . Thus $\phi_n = 0$ for all n, as desired.

ヘロン ヘアン ヘビン ヘビン

Now I can finally prove the independence result promised last time.

Theorem (p. 782)

The groups $\operatorname{Ext}_{R}^{n}(A, D)$ depend only on A and D.

Indeed, given two projective resolutions $\{P_i\}, \{P'_i\}$ of A and lifts f_n of the identity map $f : A \to A' = A$, the resulting maps ϕ_n from $\operatorname{Ext}^n_R(A, D)$ (computed via the P_i) and $\operatorname{Ext}^n_R(A', D)$ (computed via the P_i) admit maps

 $\phi_n : \operatorname{Ext}^n_R(A', D) \to \operatorname{Ext}^n_R(A, D), \phi'_n : \operatorname{Ext}^n_R(A, D) \to \operatorname{Ext}^n_R(A', D)$ such that the composites $\phi'_n \phi_n, \phi_n \phi'_n$ are induced from identity maps, so are both the identity. Thus ϕ_n, ϕ'_n are inverse isomorphisms and the assertion follows.

Given a short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of *R*-modules and projective resolutions of *L* and *N*, say by $\{P_i\}$ and $\{P'_i\}$, respectively, it is not difficult to construct a projective resolution of *M* by $\{Q_i = P_i \oplus P'_i\}$ (p. 783) such that the resolutions of *L*, *M*, *N* fit into a short exact sequence of chain complexes. Taking homomorphisms into another *R*-module *D* and the corresponding long exact sequence in cohomology, I get a sequence

$$0 \to \hom_{\mathcal{R}}(D,L) \to \hom_{\mathcal{R}}(D,M) \to \hom_{\mathcal{R}}(D,N) \xrightarrow{\gamma_0} \operatorname{Ext}^1_{\mathcal{R}}(D,L)$$

$$\rightarrow \operatorname{Ext}^{1}_{R}(D,M) \rightarrow \operatorname{Ext}^{1}_{R}(D,N) \rightarrow \cdots$$

called the long exact sequence for Ext. This sequence explains the terminology *higher derived functors* for the Ext groups.

イロン イロン イヨン イヨン 三日

In particular, it follows from this sequence and the trivial projective resolution $\dots \rightarrow 0 \rightarrow P \rightarrow P \rightarrow 0$ of any projective module *P* that an *R*-module *P* is projective if and only if $\operatorname{Ext}^{1}_{R}(P,B) = 0$ for all *R*-modules *B*, or if and only if $\operatorname{Ext}^{n}_{R}(P,B) = 0$ for all *R*-modules *B* and all $n \geq 1$.

ヘロト 人間 とくほ とくほ とう

The notation Ext here stands for "extension". An extension of an *R*-module *N* by another one *L* is a short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of *R*-modules. Given two such extensions, say

$$0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$$

$$0 \to L \to M' \to N \to 0$$

one says that they are equivalent if there is an isomorphism $f: M \rightarrow M'$ making the above diagram commute when supplemented by the identity maps from *L* and *N* to themselves (p. 381).

For example, taking $R = \mathbb{Z}$ and letting p be a prime, there is just one equivalence class of extensions of $L = \mathbb{Z}_p$ by itself with middle term isomorphic to $M = \mathbb{Z}_p \oplus \mathbb{Z}_p$. Here the automorphism group G of M is the group $GL_2(\mathbb{Z}_p)$ of all invertible 2 \times 2 matrices over \mathbb{Z}_p . Given a nonzero homomorphism $\pi : \mathbb{Z}_p \to E$ and two surjective homomorphisms $\phi_1, \phi_2 : E \to \mathbb{Z}_p$ whose kernels are both the image I of π , there is $g \in G$ that is the identity on I such that $\phi_1 g = \phi_2$. On the other hand, there are p-1 inequivalent extensions of L with middle term $M' = \mathbb{Z}_{p^2}$. Here the automorphism group of M' is $Z_{n^2}^*$, the multiplicative group of units in M'. The unique subgroup S of M' isomorphic to \mathbb{Z}_p is the one generated by the coset of p. There are p automorphisms of M'fixing S pointwise but p(p-1) surjective homomorphisms from M' to \mathbb{Z}_p , each with kernel S. Thus there are indeed p-1inequivalent extensions altogether.

イロン イロン イヨン イヨン 三日

Thus there are in all p inequivalent extensions of L by itself. It is no coincidence that $\operatorname{Ext}_{\mathbb{Z}}^{1}(L,L)$ is cyclic of order p (by a previous calculation), as it is known in general that there is a bijection between $\operatorname{Ext}_{R}^{1}(N,L)$ and equivalence classes of extensions of N by L (Theorem 12, p. 787). In this bijection the zero element of the Ext group corresponds to the split extension $L \oplus N$. There is also the structure of an additive group on equivalence classes of extensions corresponding to the additive group structure on Ext¹.

Finally, I note briefly that the tensor product functor $D \otimes_R$ likewise admits higher derived functors: using a projective resolution of the left *R*-module *B* and tensoring its terms with a. right *R*-module *D*, one defines Tor groups $\operatorname{Tor}_n^R(D, B)$ (p. 788; note the change in notation, with the ring *R* now appearing as a superscript). These groups are 0 for all *B* and all n > 0 if and only if *D* is flat. Similarly, they are 0 for all *D* and all n > 0 if and only if *B* is flat. In general one has $\operatorname{Tor}_0^R(D, B) \cong D \otimes_R B$.