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Last time I used Sylow’s Theorem to show that groups whose
order is product of two distinct primes are semidirect products,
so that in particular they are always nonsimple (i.e. they have
nontrivial normal subgroups). One can also use this theorem to
study simple groups. Today, following Chapter 6 in the text, I will
be analyzing simple groups of order 60 or 168 (these being the
two smallest nonprime orders of simple groups). I will also give a
classification of finite abelian groups (which will be generalized
to a much larger class of groups next term)
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Recall from last week that there are seven conjugacy classes in
the symmetric group S5, having orders 24, 30, 20, 20, 15, 10, and 1,
and represented respectively by a 5-cycle, a 4-cycle, the
product of disjoint 3- and 2-cycles, a 3-cycle, the product of two
disjoint 2-cycles, a single 2-cycle, and the identity. The first,
fourth, fifth, and seventh of these classes lie in the alternating
group A5, while the others are disjoint from it; the first class splits
up into two disjoint A5-conjugacy classes, both of size 12, while
the others form single A5-conjugacy classes. Since a normal
subgroup of A5 must be a union of conjugacy classes closed
under the product, one checks easily that A5 is simple (Corollary
22, p. 145), using much the same argument as the one used last
week to show that A5 is the only subgroup of S5 of order 60.
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Using the Sylow Theorem, we can now show:

Proposition 23, p. 145
Any simple group of order 60 is isomorphic to A5.

.
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Proof.
Let G be a simple group of order 60. The number n5 of 5-Sylow
subgroups cannot be 1 and divides 6, so must be exactly 6. The
conjugation action of G on the set of its 5-Sylow subgroups has
trivial kernel, since G is simple, so realizes G as (isomorphic to) a
subgroup of S6. The intersection of G and A6 is then either all of
G or of index two; since G is simple, it must be all of G. Hence G
embeds in A6 as a subgroup of index 6. The left action of G on
the left cosets of this subgroup fixes the identity coset and
permutes the other 5. If it did so trivially, then G would be a
normal subgroup of A6. There is an element g ∈ G of order 5
(generating a 5-Sylow subgroup), which must be a 5-cycle in A6,
say (12345) (fixing the index 6). G would then contain the
subgroup generated by all S-conjugates of powers of g.
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Proof.
This is all of S, since S identifies with A5 and the latter group is
simple; so we would have G = S. But S is not normal in A6, a
contradiction, so G is not normal in A6. Then its action on its left
cosets other than itself in A6 is not trivial, whence G is isomorphic
to a subgroup of the permutation group S5 of these cosets. This
forces G ∼= A5, as desired.
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Now let G be simple of order 168. It turns out that there is only
one possibility for G up to isomorphism. I will not prove this (this is
done in the text on pages 207 to 211), but I will explicitly
construct G and indicate its close relationship to the field Z2 with
two elements. Recall first that Z2 is indeed a field under addition
and multiplication, as is Zp for any prime p (see p. 34); when
regarding Z2 as a field I will denote it by F2 to emphasize the field
structure.
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Start with V = F3
2 , the three-dimensional vector space of ordered

triples over F2. This space has exactly seven lines through the
origin, one for each of its nonzero vectors, and likewise seven
planes through the origin. Note that every pair of distinct such
lines spans a unique such plane and likewise every pair of
distinct such planes intersects in a unique line. Thus lines and
planes in this setting exhibit a more uniform behavior than points
and lines in R2, where there is a unique line passing through any
pair of points but a pair of lines fails to intersect in a point if the
lines are parallel.

Lecture 10-2: Simple groups of order 60 and 168; finite abelian groupsOctober 2, 2024 8 / 18



Now look at the group G = GL3(F2) of invertible 3× 3 matrices
with entries in the field F2. In homework for this week you will
show that the order of G is 7 · 6 · 4 = 168. G acts transitively on
the lines through the origin or planes through the origin in V ; if a
line ` is contained in such a plane P, then g` is contained in gP.
Note also that every plane P is the union of exactly three lines `.
This situation is famously depicted by the Fano plane (see p.
210), in which the vertices represent lines and the lines, together
with the circle, represent planes.

Lecture 10-2: Simple groups of order 60 and 168; finite abelian groupsOctober 2, 2024 9 / 18



More generally, if Fq denotes the finite field of order q, which
turns out to be unique up to isomorphism whenever it exists and
exists if and only if q = pk is a power of a prime p, then the
projective plane P2

q, consisting of all lines through the origin in the

vector space F3
q, has q3−1

q−1 = q2 + q + 1 elements. Every plane
containing the origin in F3

q is the union of q + 1 lines in P2
q, any two

of them intersecting only at the origin when viewed as lines in
V = F3

q. The group GL3(Fq) of 3×3 invertible matrices over Fq acts
transitively on P2

q and on the set of planes through the origin in V .
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This group is a simple group, as is the group GLn(Fq) of invertible
n× n matrices over Fq for any n ≥ 3 (and in fact for n = 2 as well,
provided that q ≥ 5)).

Returning to the setting of a simple group of order 168, it turns
out that the 2-Sylow subgroups of any such group are dihedral of
order 8 and each has exactly two conjugacy classes of
subgroups isomorphic to the Klein 4-group, generated by the
center of the dihedral group together with a representative of
one of its two conjugacy classes of reflections. The normalizer of
any of these Klein 4-groups is isomorphic to the symmetric group
S4, so that there are 168/24 = 7 distinct conjugates of any of
them.
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If U,W are two nonconjugate copies of the Klein four-group in
any fixed 2-Sylow subgroup of G, then identify the conjugates of
U with points in the Fano plane and the conjugates of W with
lines in this plane. Decree that the point corresponding to a
conjugate U′ of U lies in the line corresponding to a conjugate
W ′ of W if and only if U′ and W ′ generate a Sylow 2-subgroup of
G, we can use the action of G on such points and lines to
identify G with GL3(F2).
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Having gotten just this little tase of the rich interplay between
finite groups, finite fields, and geometry, we now turn to the
abstract setting of an arbitrary finite abelian group A. For every
p dividing the order |A| of A, the p-Sylow subgroup Ap is unique
and normal in A; by counting elements we see that A is the
direct product of its Sylow subgroups Ap. In order to classify such
groups A it therefore suffices to classify abelian p-groups for a
fixed prime p.
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The surprisingly neat result is that any abelian p-group is the
direct product of cyclic p-groups. I prove this for groups P of
order pn by induction on n, following the argument on pp. 196-7
of the text. I know that any such P admits a normal subgroup Q
of order pn−1, which I can assume inductively is the direct
product C1 × · · · ×Cm of cyclic groups Ci with Ci of order pni ,
arranged so that n1 ≥ . . . ≥ nm. The quotient P/Q is cyclic of
order p; choosing y ∈ P, y /∈ Q I then have yp ∈ Q. Now an
element g of a cyclic p-group G generates G if and only if it is
not the pth power of another element. Replacing y by a
suitable translate yz for some z ∈ Ci whenever the projection yi
of yp is a pth power in Ci , I may assume that for every i that
either this projection yi is 1 or else it generates Ci .
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If yi = 1 for all i then it is easy to see that P is the direct product of
Q and the cyclic subgroup Y = 〈y〉 generated by y . Otherwise
choose the least i such that yi generates Ci , so that the order of
Y is pni+1. Then I claim that P is the direct product of Y and the
Cj for j 6= i. Indeed, it is clear from the construction that the
intersection of Y and the product P ′ of these Cj is trivial, whence
by counting elements we see that P ′ × Y fills out P, as desired.

As an immediate consequence we get

Theorem 5, p. 161
Any finite abelian group A is the direct product of cyclic
subgroups of prime-power order.
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Given A and a fixed power pm of a prime p, by counting
elements a of A with apm

= 1, one sees that the number of cyclic
factors of A of order pm is determined uniquely by A (see
Theorem 5 (3), p. 161). In particular, any finite abelian group of
order pn is a direct product of cyclic groups of orders ni , where∑

ni = n, with two such products isomorphic if and only if their
factors (after a permutation) have the same orders. Any
unordered collection of positive integers ni with

∑
ni = n is

called a partition of n. It follows that up to isomorphism, the
number of abelian groups of order pn equals the number of
partitions of n. For example, there are five partitions of 4, namely
4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, and accordingly five
isomorphism classes of abelian groups of order p4 for any prime
p.
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I close by proving a property mentioned earlier about
automorphisms. Let A be a finite subgroup of the multiplicative
group K ∗ of a field K . As a finite abelian group, A is the direct
product of its p-Sylow subgroups Ap. But now a basic fact about
polynomials over fields is that a polynomial over a field K with
degree n has at most n roots in K (Proposition 17, p. 313), so for
every k there are at most pk elements of Ap of order dividing pk .
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Since Ap is a direct product of cyclic p-groups, it must in fact be
a single cyclic group; since the direct product of cyclic groups of
relatively prime orders is again cyclic, we see that A must be
cyclic in this situation (Proposition 18, p. 314). In particular, the
multiplicative group F∗p of the finite field of order p is cyclic of
order p − 1 (Corollary 19, p. 314). Now an automorphism φ of Fp,
regarded just as an additive group, is determined by the image
φ(1) of its generator 1, which can be any nonzero element of Fp.
The composite φ ◦ ψ of two such automorphisms sends 1 to the
product φ(1)ψ(1), so that the automorphism group
Aut Fp ∼= F∗p ∼= Zp−1, as claimed earlier.
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