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After briefly wrapping up the material on injective modules,
today I return (for the last time) to tensor products, investigating
the relationship between them and homomorphisms and the
extent to which they preserve exact sequences.
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I showed last time that a Z-module is injective if and only if it is
divisible, except that I need to complete the proof of Baer’s
Criterion. If the criterion holds for some R-module Q and I am
given an R-module map f from a submodule A of another
R-module B into Q, I need to show that this extends to a map
from B into Q. Last time I showed that given b ∈ B, .b /∈ A, I could
extend f to A + Rb. I now invoke Zorn’s Lemma (see Appendix 2
in the text) to argue that there is a maximal submodule B′ of B to
which I can extend f , which by the first part of the proof must be
all of B, as desired.
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Next I show that there are enough injective modules to contain
any Z-module.

Corollary 37, p. 397
Any Z-module M is contained in an injective Z-module.

Proof.
We can write M ∼= F/K , where F is a free module, say with basis
(fi). Letting Q be the Q-vector space with basis (fi), there is an
obvious inclusion of F into Q and thus an inclusion of M into Q/K .
As Q/K , like Q, is easily seen to be injective, the result follows.
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In particular, divisible Z-modules need not be Q-vector spaces
(this is a common mistake), though certainly any Q-vector space
is a divisible Z-module. In later homework you will show

Theorem 38, p. 398
Any module M over any ring R is contained in an injective
R-module.

In a nutshell, given M, the injective module containing it is
M′ = homZ(R,Q), where Q is an injective Z-module containing
M and we make M′ into an R-module via rf (s) = f (sr) for
r , s ∈ R, f ∈ M′. Thus although we have not captured all injective
R-modules, we know at least that there are a lot of them.
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Now I turn to the relationship (promised earlier) between
homomorphisms and tensor products.

Theorem 43 (adjoint associativity), p. 401
Let R and S be rings, let A be a right R-module, B an
(R, S)-bimodule, and C a right S-module. Then there is an
isomorphism of abelian groups

homS(A⊗R B.C) ∼= homR(A.homS(B,C))

Here both groups are homomorphisms of right modules;
homS(B,C) is a right R-module via the action r · f (x) = f (rx) for
r ∈ R, x ∈ B.
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Proof.
Given a homomorphism φ : A⊗R B → C, for each fixed a ∈ A
define Φ(a) : B → C via Φ(a)(b) = φ(a ⊗ b) It is easy to check
that Φ(a) is a homomorphism of right S-modules and that the
map Φ from A to homS(B,C) mapping a to Φ(a) is a
homomorphism of right R-modules. Thus f (φ) = Φ defines a
group homomorphism from homS(A⊗R B,C) to
homR(A,homS(B,C)). Conversely, suppose Φ : A→ homS(B,C) is
a homomorphism. The map from A× B to C sending (a,b) to
Φ(a)(b) induces a homomorphism φ : A⊗R B → C, whence
g(Φ) = φ defines a group homomorphism inverse to f and yields
the desired isomorphism.
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Given a short exact sequence 0→ L→ M → N → 0 of left
R-modules an right R-module D, note first that one has a natural
sequence 0→ D ⊗R L→ D ⊗R M → D ⊗R N → 0; if
f : L→ M,g : M → N, then the map f1⊗ f : D⊗R L→ D⊗R M sends
a tensor d ⊗ x to d ⊗ f (x), while the map 1⊗g : D⊗R M → D⊗R N
sends d ⊗ y to d ⊗g(y). Then 1⊗g has all decomposable tensors
in its image, so is surjective. Given d ⊗ n ∈ D ⊗R N, choose any
m ∈ M with g(m) = n and set π(d ⊗ n) = d ⊗m ∈ (D ⊗R M)/M′,
where M′ is the image of 1⊗ f . The map π is then well-defined
and a two-sided inverse to 1⊗ g, so that the kernel of 1⊗ g
coincides with the image of 1⊗ f . We summarize this situation by
saying that the functor D ⊗R −, sending an R-module M to
D ⊗R M, is right exact (Theorem 39, p. 399). On the other hand,
the first map from D ⊗R L to D ⊗R M need not be injective.
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For example, if R = Z,D = Zn, L = nZ,M = Z, and f is the inclusion
of L into M, then both L ⊗Z D and M ⊗Z D are cyclic groups of
order n, generated by n⊗ 1 and 1⊗ 1, respectively; but the
tensor n⊗ 1, regarded as an element of Z⊗Z D, is 0, since it
equals 1⊗ n = 0. Thus the covariant functor D⊗R − is not exact in
general.

Definition, p. 400
The right R-module D is called flat if D ⊗R − is exact on left
R-modules, or equivalently if for any injection L→ M of left
R-modules the induced map D⊗R L→ D⊗R M is also an injection.
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As with injective modules, there is no uniform characterization of
flat R-modules in general, but one does have the following result.

Proposition; Corollary 42, p. 390
Any projective R-module is flat.

Proof.
If P is projective, so that for some Q the direct sum F = P ⊕Q is
free, then tensoring with F is exact since it amounts to just
replacing a module with the direct sum of r copies of itself,
where r is the rank of F . Also we have seen that tensor products
commute with direct sums (Theorem 17, p. 373). Exactness
follows since a restriction of an injective map is again
injective.
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Example
There are flat nonprojective modules, even over principal ideal
domains. As an example, take R = Z. If M is an R-module, then I
have previously observed that any element of N = M ⊗R Q takes
the form m⊗ 1

c for some c ∈ Rc 6= 0. In order to decide when this
element is 0, i give an equivalent construction of N, which will
turn out to have considerable importance in Math 506 next
spring. Let S be the set of nonzero elements of R. Denote by
S−1M the set of equivalence classes of formal fractions m

c for
m ∈ M,c ∈ S, under the relation m

c ∼
n
d if e(dm− cn) = 0 for

some e ∈ S.
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Example
One easily checks that this is indeed an equivalence relation; it is
a weakened version of the usual cross-multiplication condition
for two fractions to be equal. Make S−1M into an R-module
(celled the localization of M at S via the rules
m
c + n

d = dm+cn
cd , z m

c = zm
c ; these rules are well defined on

equivalence classes. One has m = m
1 = 0 in S−1M if and only if

sm = 0 for some s ∈ S. It is then easy to check that the map
sending m⊗ 1

c to m
c is an isomorphism from N onto S−1M. It

follows that if f : M → P is an injection of R-modules, then
m⊗ 1

c = 0 in M ⊗R Q if and only if f (m)⊗ 1
c = 0 in P ⊗R Q, or if and

only if sm = 0 for some s ∈ R.

Lecture 10-18: Homomorphisms and tensor products October 18, 2024 12 / 13



Thus, in summary (see pages 402-3):
For a left R-module M, the functors homR(M,−) and
homR(−,M) from left R-modules to abelian groups are left
exact but not exact in general. The first of these functors is
covariant; the second is contravariant.
For a right R-module M, the functor M ⊗R − from left
R-modules to abelian groups is right exact but not exact in
general. This functor is covariant.
A left R-module is projective if and only homR(M,−) is exact,
or if and only if M is a direct summand of a free module.
A left R-module is injective if and only if homR(−,M) is exact.
Over principal ideal domains R,M is injective if and only if it is
divisible, or M = rM for all r ∈ R, r 6= 0.
A right R-module M is flat if and only if the functor M ⊗R − is
exact. Projective modules are flat.
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