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Perhaps not surprisingly, the tensor product of two modules with
a product structure also has a product structure. I will exploit this
to study certain rings that are also vector spaces over fields F ,
defining a product on certain equivalence classes of such rings
that yields information about F .
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Given a commutative ring R, an R-algebra is a ring A that is also
an R-module such that (ra)b = a(rb) = r(ab) for r ∈ R,a,b,∈ A
(Definition, p. 342). Then we have

Proposition 21, p. 374
The tensor product A⊗R B of two R-algebras A,B is again an
R-algebra, satisfying (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 for
ai ∈ A,bi ∈ B.

The proof is a very simple calculation.
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Today I want to concentrate on the special case where R = F is
a field and A and B are (finite-dimensional) central simple over F ,
so that the centers of A and B both coincide with the images of
F inside them, A and B are finite-dimensional over F , and neither
A nor B has a nonzero proper two-sided ideal. Then one has

Theorem
The tensor product C = A⊗F B is central simple over F whenever
A and B are.
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Proof.

Any element of C can be written as
m∑

i=1
ai ⊗ bi , with ai ∈ A,bi ∈ B,

and the bi linearly independent over F . If I is a nonzero proper
ideal of C, choose a nonzero x ∈ I of this form with m as small as
possible. The ideal of A generated by a1 must be all of A, so
there are d1, . . . ,dr ,e1 . . . ,er ∈ A with

∑
i dia1ei = 1. Then

x ′ =
∑

i(di ⊗ 1)x(ei ⊗ 1) =
∑

i a′i ⊗bi lies in I, has the same value of
m as x , and has a′1 = 1. If a′i /∈ F for any i 6= 1, then we can take
the commutator (a ⊗ 1)x ′ − x ′(a ⊗ 1) for suitable a ∈ A to
produce an element of I with a smaller value of m, a
contradiction, unless m = 1. But then we have 1⊗ b ∈ I for some
nonzero b ∈ B; choosing d ′1 . . . ,d

′
s,e
′
1, . . . ,e

′
s ∈ B with

∑
d ′i be′i = 1

and forming the corresponding sum with b replaced by 1⊗ b,
we get 1⊗ 1 ∈ I, a contradiction.
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Proof.
Thus C is simple. If x =

∑
ai ⊗ bi has linearly independent bi , lies

in the center of C, and has ai /∈ F for some i, then the
commutator of x and a ⊗ 1 for suitable a ∈ A is not 0, since a
sum

∑
a′i ⊗ bi for a′i ∈ A can be 0 only if all a′i are 0. So all ai lie in

F and one can replace x by 1⊗ b for some b ∈ B. Taking the
commutator with a suitable 1⊗ b′, one sees that b must lie in F ,
so that the center of C is F , as claimed.
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Thus the tensor product over F defines a product structure on the
set of (isomorphism classes of) central simple algebras over F . By
results proved last time, this product is commutative and
associative. It has the algebra F as an identity element, since
F ⊗F A ∼= A for any F-algebra A. But inverses are lacking, since
the dimension over F of any tensor product A⊗F B is the product
of the dimensions of A and B over F , so cannot be one unless A
and B are both isomorphic to F .
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To remedy this defect I will quote a basic result that any
finite-dimensional central simple algebra A over a field F is
isomorphic to the ring Mr(D) of all r × r matrices over a central
simple division algebra D over F ; moreover, both D and r are
uniquely determined by A (see the Example, p. 834, property III).
Writing A ∼ B if the algebras A,B are matrix rings over the same
division algebra D, one easily sees that ∼ is an equivalence
relation. The above product is then well defined on
∼-equivalence classes.
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Thus the central simple F-algebra A will have an inverse under
the above product if there is an algebra B such that
A⊗F B ∼= Mr(F) for some r . It turns out that there is a simple
uniform recipe for such an algebra: setting B = A as an F-vector
space but with multiplication defined by the rule that the
product of a1,a2 ∈ B is the reverse product a2a1 in A, then one
easily checks that B is central simple. This B is denoted Ao and
called the opposite algebra of A.
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Theorem
With notation as above, one has A⊗F Ao ∼= Mr(F), where
r = dimF A.

Proof.
Define a map from C = A⊗F Ao to Mr(F) by sending

∑
i ai ⊗ a′i to∑

λaiρa′
i
, regarded as an F-linear transformation from A to itself,

where λa, ρa respectively denote the ltransformations
corresponding to left and right multiplication by a. This map is
well defined on the tensor product and a homomorphism,
thanks to the definitions of multiplication in C and the opposite
algebra Ao. Since it is clearly not the 0 map and C is simple, it
must have trivial kernel; since both C and Mr(F) have dimension
r2 over F , it must be an isomorphism, as desired.
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The upshot of this discussion is to any field F we can attach a
group, called its Brauer group and denoted Br(F), consisting of
all equivalence classes of finite-dimensional central simple
algebras over F , with multiplication given by tensoring over F
(see the Definition on p. 836).
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Example
If F is the field C of complex numbers, then the only central
simple division algebra over F is F itself. This fact turns out to be a
simple consequence of the Fundamental Theorem of Algebra
that every polynomial in one variable over C is the product of
linear factors. Consequently Br(C) is the trivial group. If F is a finite
field, then Br(F) is also trivial; this is because a famous theorem of
Wedderburn (which you will prove later) asserts that the only
finite division rings are fields, so that again the only central simple
division algebra over F is F itself.
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Example
For the field F = R of real numbers matters are more interesting.
There is a famous division algebra over F different from F , called
the quaternions (or the Hamilton quaternions in the text on p.
224) and denoted H. It is four-dimensional over F , having a basis
denoted 1, i, j, k ; here you should think of i, j, k as the coordinate
axes in R3, as in physics. Of course 1 is the multiplicative identity;
the other basis elements multiply according to the rules
i2 = j2 = k2 = −1, ij = −ji = k , ki = −ik = j, jk = −kj = i. Bearing in
mind the usual formula for dot and cross products in R3, one can
check that any two real combinations v ,w of i, j, k have the
product −(v ·w) + (v ×w) in H, where of course v ·w ∈ R and
v ×w ∈ R3 is the cross product of v and w , regarded as a linear
combination of i, j, k .
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Example

Defining the conjugate z = a + bi + cj + dk of z = a +bi +cj +dk
as a − bi − cj − dk (analogous to the complex conjugate), one
finds that zw = w z (it is enough to check this for v ,w ∈ {1, i, j, k})
and N(z) = zz = a2 + b2 + c2 + d2 ∈ R, with N(z) = 0 if and only if
z = 0. Hence the multiplicative inverse z−1 exists in H if z 6= 0 and
is given by z

N(z) . The map sending z ∈ H to z defines an
isomorphism between H and its opposite Ho, so that the class of
H is its own inverse in Br(R). In fact the classes of R and H are the
only ones in Br(R), so that this group is cyclic of order two.
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Example
Of course there is no need to insist on real coefficients of 1, i, j, k
here. One could equally well consider all combinations
a + bi + cj + dk with a,b,c,d ∈ Q, or even a,b,c,d ∈ Z. The
former choice leads to a central simple division algebra over Q,
but this time it turns out that there are many other such
examples: Br(Q) is an infinite group (but still countable). What if
one took the coefficients to lie in the finite field Zp with p prime?
At first it seems that one would get another division ring, but this
cannot be the case, since I have already mentioned that all
finite division rings are fields. Instead it turns out that the
equation a2 + b2 + c2 + d2 = 0 always has a nontrivial solution in
Zp, so the analogue of H over Zp has zero divisors.
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