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Modules over rings do not have product structures on them, but
given two modules over the same ring, one can form a third
module which can be viewed as the product of the first two. The
construction is very general and difficult to grasp all at once, so I
will introduce it in stages, making different hypotheses on the
base ring at each stage.
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Assume to begin with that R is commutative and let M and N be
two R-modules. In order to define the product of these modules,
one would have to make sense of the expression m× n for
m ∈ M,n ∈ N. If one does this in the most general possible way,
assuming only those properties of m× n that would hold for any
product worthy of the name, one is led to
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Definition; see equation 10.6 on p. 364
The tensor product M ⊗R N of M and N over R is the quotient of
the free R-module F on the Cartesian product M × N by the
submodule S generated by

((m1 + m2),n)− (m1,n)− (m2,n) for m1,m2 ∈ M,n ∈ N;
(m,n1 + n2)− (m,n1)− (m,n2) for m ∈ M,n1,n2 ∈ N; and
r(m,n)− (rm,n), r(m,n)− (m, rn) for r ∈ R,m ∈ M,n ∈ N.

The image of (m,n) in M ⊗R N is called the tensor product of m
and n and is denoted m⊗ n. It is called a (decomposable)
tensor.
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Thus an element of M ⊗R N is a finite sum of tensors (but not
necessarily a single tensor). The third set of generators
r(m,n)− (rm,n), r(m,n)− (m, rn) of S demonstrates the role that
the subscript R plays in the definition of M ⊗R N. An expression
like m⊗ n is unambiguous only if we know exactly which scalars
we can move past the tensor product sign. Note that every
bilinear or balanced map from the Cartesian product M × N to
an R-module P, that is, every map f satisfying
f (m1 + m2,n) = f (m1,n) + f (m2,n), f (m,n1 + n2) =
f (m,n1) + f (m,n2), f (rm,n) = f (m, rn) = rf (m,n), corresponds
uniquely to an R-module map g : M ⊗R N → P (Theorem 10, p.
365).
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One has the commutative law M ⊗R N ∼= N ⊗R M (Proposition 21,
p. 374), the associative law (M ⊗R N)⊗L

∼= M ⊗R (N ⊗R L)
(Theorem 14, p. 371), and the distributive law
M ⊗R (N1 ⊕ N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2) (Theorem 17, p. 373).
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Example
The simplest case of this construction occurs when both M and
N are free over R, say with bases {b1, . . . ,bm} and {c1, . . . ,cn},
respectively. In this case a typical tensor t = (

∑
i ribi)⊗ (

∑
j sjcj)

can be rewritten as
∑

ij risj(bi ⊗ cj). The map sending t to
s =

∑
ij risjbicj , regarded as an element of the free module P on

the bicj , extends to an R-module homomorphism from F to P
which is easily seen to send the submodule S to 0 and to define
an isomorphism from F/S = M ⊗R N to P. Thus the tensor product
of two free modules over R is another free module whose rank is
the product of the ranks of the factors. This is what we would
expect, given the product terminology. But notice that the
subscript is crucial: the tensor product C⊗R C is free of rank
2 · 2 = 4 over R, while the tensor product C⊗C C) is isomorphic to
C and so free of rank 2 over R (Example 4, p. 375).
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Example
Matters get a little more complicated once one moves beyond
free modules. For example, the tensor product T = (R/I)⊗R (R/J)
of two cyclic modules is the cyclic module R/(I + J), where I, J
are ideals of R. To see this, observe that T is clearly cyclic, being
generated by 1⊗ 1, and that i(1⊗ 1) = j(1⊗ 1) = 0 ∈ T for all
i ∈ I, j ∈ J. Then the map sending

∑
i r i ⊗ si ∈ T to

∑
i risi ∈ R/(I + J),

where r i , si denote the respective cosets of ri , si in R/I,R/J is an
isomorphism. Note that I exploited the product structure in R and
its quotients R/I,R/J to understand the structure of T . In
particular, if the sum I + J is all of R, then (R/I)⊗R (R/J) = 0 even
though neither factor is 0.
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Example
The tensor product of a free and a nonfree module can also be
smaller than one might expect. For example, we have
Zn ⊗Z Q = 0, since given a typical tensor x ⊗ y we can write
y = nz for some z ∈ Q and then x ⊗ y = nx ⊗ z = 0. This vanishing
property will come in handy when I prove the uniqueness part of
the classification of finitely generated modules over a principal
ideal domain. We also have T = Q⊗Z Q ∼= Q, since a tensor a

b ⊗
c
d

can be rewritten first as ac
b ⊗

1
d and then as ac ⊗ 1

bd . Thus
T ∼= T ′ = Q⊗Q Q; by analogy with C⊗R C one could have
expected T to be larger than T ′.
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I now drop the assumption that R is commutative. Let R′ be
another ring and let M be an R′ − R bimodule, so that M is
simultaneously a left R′-module and a right R-module and
(r ′m)r = r ′(mr) for r ∈ R, r ′ ∈ R′, and m ∈ M (Definition, p. 366).
Taking N to be a left R-module, define the tensor product M ⊗R N
to be the quotient F/S defined above, except that the third set
of generators for the submodule S should now be
(mr ,n)− (m, rn); note that this choice of generator is more
natural than the earlier one if R is not commutative. Then M ⊗R N
is no longer either a left or right R-module, but it is a left
R′-module via the recipe r ′(m⊗ n) = r ′m⊗ n for
r ′ ∈ R′,m ∈ M,n ∈ N. (One easily checks that this action is
compatible with the generators used to define M ⊗R N.) This
construction applies in particular if M = R′,R is a subring of R′,
and N is a left R-module; one says in this case that R′ ⊗R N is
obtained from N by extending scalars or by change of ring.

Lecture 10-11: Tensor products I October 11, 2024 10 / 1



Finally, in the most general setting, M is a right R-module and N a
left R-module. Defining M ⊗R N as above, one finds that it is still
an abelian group, but now lacks any R-module structure. For
example, if M = R/I,N = R/J with I a right ideal and J a left one
of R, then M ⊗R N ∼= R/(I + J); even though I + J is neither a left
nor a right ideal of R, it is still an additive subgroup, so that the
quotient by I + J makes sense. Recall that I earlier observed that
the space homR(M,N) of R-module homomorphisms between a
pair M,N of left R-modules is likewise an abelian group but not
an R-module (unless R is commutative). In fact, the tensor
product and homomorphism constructions are closely related; I
will say more about both of these constructions later.
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For now, I will close by returning to a special case of the first
situation I considered today. Assume once again that R is
commutative and let V be a free R-module of finite rank n. One
can construct the tensor product Tm = T mV = ⊗m

R V of any
number of copies of V , defined in the (essentially) obvious way;
this is a free R-module of rank nm, called the mth tensor power of
V . The quotient T mV/E of Tm by the submodule E generated by
all tensors of the form . . .⊗ v ⊗ . . .⊗ v ⊗ . . . as v runs over V called
the mth exterior power of V and denoted

∧
m =

∧m V (see the
Definition on p. 446). Decomposable elements of it are denoted
v1 ∧ . . . ∧ vm with the vi ∈ V . As a consequence of its definition
the fundamental relation
(. . . ∧ v ∧ . . . ∧w ∧ . . .) = −(. . . ∧w . . . ∧ v ∧ . . .) holds in

∧
m for all

v ,w ∈ V .
∧

m is free over R with basis consisting of all vi1 ∧ . . . vim ,
where v1, . . . ,vn is a basis of V and the indices ij satisfy
i1 < i2 < . . ..
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The rank of
∧

m is thus the binomial coefficient
(n

m

)
; this rank is 0

whenever m > n, so that
∧

m = 0 in that case. One also has the
mth symmetric power Sm = SmV , defined to be the quotient
Tm/S, where S is the submodule generated by all tensors of the
form . . .⊗ v ⊗ . . .⊗w ⊗ . . . as v ,w range over V (see the
Definition on p. 444). Decomposable elements of Sm are
denoted w1⊗ . . .⊗wm or just w1 . . .wm where the wi lie in V ; here
we have . . .wi . . .wj . . . = . . .wj . . .wi . . .. Like

∧
m, Sm is free over R.

A basis of it consists of all vi1 . . . vim as the vij run through a basis of
V , where this time the indices satisfy i1 ≤ i2 ≤ . . .. The rank of Sm
turns out to be

(n+m−1
m

)
. Thus we never have Sm = 0, unlike the

situation for
∧

m, and in fact the rank of SmV increases as m does.
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The direct sum T = T (V ) = ⊕∞i=0Ti of the Ti (taking T0 = R, T1 = V )
then has a ring structure; here one decrees that
(v1 ⊗ . . .⊗ vm)(w1 ⊗ . . .⊗wr) = v1 ⊗ . . .⊗wr (and extends to
arbitrary products by the distributive law). T is called the tensor
algebra of V (Definition, p. 443). It is a graded ring: we have
TiTj ⊂ Ti+j for all indices i, j. The product structure extends to
S = S(V ) = ⊕∞i=0S iV and

∧k =
∧k V = ⊕∞i=0 ∧

i V in the obvious way;
these are called the symmetric and exterior algebras of V . These
too are graded rings. Note that the exterior algebra of V has
finite rank 2n as an R-module, while the symmetric algebra has
infinite rank.
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In practice tensor, symmetric, and exterior algebras arise most
commonly in the context of a finite-dimensional vector space V
over a field K . The one-dimensionality of

∧n V plays a crucial role
in the development of the determinant in Section 11.4 of the
text.
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