
MIDTERM #2 SOLUTIONS

1. State the basic properties proved in class about continuous functions on a closed
bounded interval and indicate which of these also hold for derivatives on such an interval.

The properties I had in mind are the Intermediate Value Property (that the function f
takes on all values between f(a) and f(b) in the interval is [a, b]) and the Extreme Value
Property (that f has a maximum and minimum on [a, b]). Derivatives satisfy the first of
these but not the second. A number of people mentioned uniform continuity, but since
derivatives need not even be continuous, they certainly need not be uniformly continuous.

2. Let ak be a periodic sequence of signs, so that there is an integer N > 0 with ak+2N = ak
for all k and each ak = ±1. Assume also that

∑2N
k=1 ak = 0 and let bk be a sequence of

real numbers such that bk ≥ bk+1 for all k and bk → 0 as k →∞. Use a theorem in class
to show that the series

∑∞
k=1 akbk converges.

This follows from Dirichlet’s Test, but for full credit you needed to verify that the partial
sums of

∑
ak are bounded. This requires both of the additional hypotheses that the ak

are periodic and
∑2N

k=1 ak = 0; given these, it follows that the partial sums of
∑

ak are
likewise periodic, so that only finitely many partial sums occur and it is clear that they
are bounded. It is not enough to observe that the ak themselves are bounded; one must
also look at partial sums of them.

3. Work out a power series expansion of g(x) = ex
3

, by starting with a power series for ex

and then making a suitable change of variable.

Few people had any trouble with this one. Starting with the power series
∑∞

n=0
xn

n! for ex,

replace x by x3 to get
∑∞

n=0
x3n

n!

4. Correct the following misstatements of theorems proved in class (you need not prove
the corrected versions).

(a) If the pointwise limit f of a sequence of continuous functions fn is continuous,
then the convergence is uniform.

(b) If f is a continuous function on R and C ⊂ R is connected, then the inverse image
f−1(C) is connected.

(c) If f : R → R is infinitely differentiable (i.e. has derivatives of all orders), then f
has a Taylor expansion f(x) =

∑∞
n=0 anx

n with a positive radius of convergence.

This problem caused the most trouble. In part (a) you had to reverse the hypothesis and
conclusion: if the convergence is uniform, then the limit f is continuous. In part (b), you
had to replace the inverse image f−1(C) by the image f(C). In part (c) you again had
to reverse hypothesis and conclusion: if f has a Taylor expansion with positive radius of
convergence, then it is infinitely differentiable.



5. Give an example (possibly using a theorem in class) of a function f that is the uniform
limit of differentiable functions on an interval [a, b] but is not differentiable on that interval.

By a general result in class (the Weierstrass Approximation Theorem), any continuous
function on [a, b] is the uniform limit of polynomials, but since by an example in class
there are continuous functions on this interval that are nowhere differentiable, any such
function provides an example. Alternatively, I showed directly in class (while proving the
Weierstrass Theorem) that f(x) = |x| is the uniform limit of polynomials on say [−1, 1];
but this function fails to be differentiable at x = 0.


