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I conclude the course by stating an important criterion for a
bounded function f on a closed bounded interval [a,b] to be
integrable. Roughly speaking, this holds if and only if f is not too
badly discontinuous on [a,b]..
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To be more precise, I first need to define a property of subsets of
R.

Definition 7.6.1, p. 240
A set A ⊂ R has measure 0 if given any ε > 0 there is a countable
collection {On = (an,bn)} of open intervals such that A ⊂ ∪On
and

∑∞
n=1(bn − an) < ε.

Note that the difference bn − an is a natural measure of the
length of the interval (an,bn); thus this definition says that A has
total length 0 in some sense, For example, any countable set
{xi , i ∈ N} has measure 0, since we can take
Oi = (xi − ε/3i , xi + ε/3i) in that case. More interestingly, as I
observed when I constructed the Cantor set C, this set is
uncountable but also has measure 0, since for any n it is
contained in the union of 2n intervals, each of length 1/3n, and
we have 2n/3n < ε if n is large enough.
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More strongly, we say that A ⊂ R has content 0 if given any ε > 0
there is a finite collection (a1,b1), . . . , (an,bn) of open intervals
such that A is contained in the union U of this collection and∑n

i=1(bi − ai) < ε. Clearly any finite set has content 0; but the
intersection S = Q ∩ [0, 1] has measure 0 but not content 0. For if
there were a finite set (a1,b1), . . . , (an,bn) whose union contains
S and whose total length

∑
(bi − ai) is less than 1/2, then the

union of the closed intervals [ai ,bi ] would also contain S,
whence it would contain the unit interval [0, 1] by the density of S
in [0, 1]; but it is easy to see check that no finite union of closed
intervals of total length less than b − a can contain a closed
interval [a,b]. In general, however, a closed set has measure 0 if
and only if it has content 0.
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The criterion for integrability is then

Theorem 7.6.5, p. 242
The (bounded) function f is integrable on [a,b] if and only if the
set D of points x ∈ [a,b] such that f is discontinuous at x has
measure 0.

A function f satisfying this criterion is said to be continuous
almost everywhere; more generally, a property of real numbers
which holds except on a set of measure 0 is said to hold almost
everywhere. A proof of the theorem is given in the text on pp.
242-3; it is set up as a sequence of exercises and uses some
additional facts about compact sets from Chapter 3. One first
writes the set D as the countable union

∑
Dn, where Dn consists

of the points x ∈ D for which the oscillation ωx f > 1/n; recall that
ωx f is defined as the limit of Mn −mn as n→∞, where Mn is the
supremum of f on [−1/n, x + 1/n] and mn is the infimum of f on
the same interval.
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Then it turns out that D has measure 0 if and only if each Dn has
content 0. If this holds, then by arguing as in the proof that
Thomae’s function is integrable one produces for each ε > 0 a
partition P of [a,b] such that U(f ,P)− L(f ,P) < ε, whence f is
integrable. Conversely, if f is integrable and the partition P is
chosen to make U(f ,P)− L(f ,P) < ε/n, then one can show
directly that each Dn has content 0, whence D has measure 0.
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I conclude with an example of a continuous increasing function
f on the unit interval [0, 1] such that f ′(x) = 0 almost everywhere,
f (0) = 0, and f (1) = 1. The derivative f ′(x) is Riemann integrable,
being continuous almost everywhere, but its integral from 0 to 1
is 0 rather thatn 1 = f (1)− f (0). Recall the definition of the Cantor
set C from p. 86 of the text: we have C = ∩∞n=0Cn, where Cn is
the disjoint union of 2n subintervals of C0 = [0, 1], each of length
3−n. We construct the subintervals of Cn by removing the open
middle third of each subinterval of Cn−1, thereby replacing it by
the union of two subintervals, each 1/3 the length of the original
subinterval.
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Define the function gn on C0 by gn(x) = (3/2)n if x ∈ Cn,gn(x) = 0
otherwise, and set fn(x) =

∫ x
0 gn(t)dt . Then fn(0) = 0, fn(1) = 1,

and each fn is a (weakly) increasing function which is constant
on each subinterval in the complement of Cn. If I is one of the 2n

intervals whose union is Cn, then
∫

I gn(t)dt =
∫

I gn+1(t)dt = 2−n.
It follows that fn+1(x) = fn(x) if x 6∈ Cn and
|fn+1(x)− fn(x)| <

∫
I |gn − gn+1|dt < 2−n+1 if x ∈ En. Hence the

sequence fn converges uniformly to a continuous increasing
function f with f (0) = 0, f (1) = 1, and f ′(x) = 0 for all x 6∈ C (since
any such x fails to lie in Cn for n sufficiently large). Since C has
measure 0, this function f has the desired properties.
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Such a function f is called singular. There is a more general
notion of the measure m(A) of a subset A of R; this need not be
0, and indeed m[a,b] = b − a for every closed bounded interval
[a,b]. Then m(A) is not defined for all subsets A of R, but it is
defined for many such subsets, including all open and closed
subsets and all countable unions or intersections of such sets. A
real-valued function f on R is said to be measurable if V = f−1(U)
is measurable (i.e. m(V ) is defined) whenever U is. A
generalization of the Riemann integral called the Lebesgue
integral is then defined for all bounded measurable functions f
on [a,b]. The Lebesgue integral of any function f equal to 0
almost everywhere is 0.
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There is a brief discussion of the Lebesgue integral on p. 247 of
the text, followed in Chapter 8 by the definition of further
generalization of the Riemann integral that goes beyond even
the Lebesgue integral.
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The remaining lectures this week will be devoted to review for
the final.
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