
Lecture 5-7: Wrapping up derivatives

May 7, 2025

Lecture 5-7: Wrapping up derivatives May 7, 2025 1 / 1



I will begin by returning to the example from last time of the
function f (x) defined by x2 sin(1/x) if x ̸= 0, f (0) = 0. We have
seen that the derivative f ′(x) of this function is given by
f ′(x) = 2x sin(1/x)− cos(1/x) if x ̸= 0 while f ′(0) = 0. Now the
function g(x) defined by g(x) = 2x sin(1/x) if x ̸= 0,g(0) = 0, is
easily seen to be continuous, whence by the Fundamental
Theorem of Calculus it is a derivative, as is the difference
h(x) = g(x)− f ′(x) = cos(1/x) if h(0) is defined to be 0.
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Then the function k(x) defined by (1− x) cos(1/x) if x ̸= 0, k(0) = 0,
is then also a derivative, since the function h(x) = x cos(1/x) for
x ̸= 0,h(0) = 0, is continuous and so is a derivative. Note that the
supremum of k(x) on [0, 1] is 1 while its infimum is -1, and that it
fails to attain either of these values. Thus the Extreme Value
Property, unlike the Intermediate Value Property, can fail for
derivatives, even on closed bounded intervals.
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So can boundedness: if we take r(x) = x2 sin(1/x2) for
x ̸= 0, r(0) = 0, then r ′(x) = 2x sin(1/x2)− (2/x) cos(1/x2) for x ̸= 0
while r ′(0) = 0 and r ′ is not bounded on [0, 1].
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If we take F(x) = f (x) + x
2 = x

2 + x2 sin(1/x) for x ̸= 0, F(0) = 0, then
F ′(0) = 1/2 while F ′(x) < 0 for certain values of x arbitrarily close
to 0. It follows that there is no interval [0,a] for a > 0 such that F is
weakly increasing on [0,a], even though F ′(0) > 0. The
connection between monotonicity and the sign of the first
derivative is weaker than one might expect if the first derivative
is discontinuous.

Lecture 5-7: Wrapping up derivatives May 7, 2025 5 / 1



Next I will state the well-known second derivative test for a local
maximum or minimum:

Theorem
Let f be twice differentiable on an open interval (a,b) and
suppose that x0 ∈ (a,b) is such that f ′(x0) = 0, f ′′(x0) > 0. Then x0
is a local minimum of f . Similarly if f ′(x0) = 0, f ′′(x0) < 0, then x0 is
a local maximum of f .

Lecture 5-7: Wrapping up derivatives May 7, 2025 6 / 1



Proof.
If f ′(x0) = 0, f ′′(x0) > 0, then the definition of f ′′(x0) shows that
there is an interval (x0 − δ, x0 + δ) such that f ′(x) > 0 for
x ∈ (x0, x0 + δ) while f ′(x) < 0 for x ∈ (x0 − δ, x0). The Mean Value
Theorem then guarantees that f is is strictly decreasing on
(x0 − δ, x0] and strictly increasing on [x0, x0 + δ). This implies that f
has a local minimum at x0, as claimed. The other case
f ′(x0) = 0, f ′′(x0) < 0 is similar.
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More generally, suppose that f ′(x0) = 0, f is n times differentiable
at x0, and that n is the smallest positive integer with f (n)(x0) ̸= 0.
Then, if n is even, we get the same criterion for x0 to be a local
maximum or minimum as for the case n = 2, while if n is odd then
x0 is neither a local maximum or a local minimum for f ; we call x0
as saddle point for f in this situation. (If, as is possible even for
nonconstant f , we have f (n)(x0) = 0 for all n, then we are out of
luck; no information can be deduced.)
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There is a refinement of the Mean Value Theorem called the
Cauchy (or parametric) Mean Value Theorem; in the text it is
called the Generalized Mean Value Theorem.

Theorem 5.3.5, p. 158
Let the functions f ,g be continuous on [a,b] and differentiable
on (a,b) with g′(x) ̸= 0 on (a,b). Then there is x0 ∈ (a,b) with
f (b)−f (a)
g(b)−g(a) =

f ′(x0)
g′(x0)

.
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Proof.
To begin with, Rolle’s Theorem guarantees that g(b) ̸= g(a), so
that the conclusion makes sense. Next, setting m = f (b)−f (a)

g(b)−g(a) and
applying Rolle’s Theorem to h(x) = f (x)− f (a)− m(g(x)− g(a)),
we get h′(x0) = 0 for some x0, since h(a) = h(b) = 0, and the
conclusion follows immediately.

Note that if we applied the Mean Value Theorem directly to the
ratio f (b)−f (a)

g(b)−g(a) = ( f (b)−f (a)
b−a )/(g(b)−g(a)

b−a ) we would get that this ratio
equals f ′(x0)/g′(x1) for some x0, x1 ∈ (a,b). The above theorem
implies the stronger result that we can take x0 = x1.
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As an immediate consequence we get

L’Hopital’s Rule; Theorem 5.3.6, p. 159
Let f ,g be differentiable on an open interval I and x0 ∈ I.
Suppose that f (x0) = g(x0) = 0,g(x) ̸= 0 for x ∈ I, x ̸= x0, and that
L = limx→x0

f ′(x)
g′(x) exists. Then limx→x0

f (x)
g(x) exists and equals L.

This follows at once since for x ̸= x0 we have
f (x)
g(x) =

f (x)−f (x0)
g(x)−g(x0)

= f ′(y)
g′(y) for some y between x0 and x .
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Finally let me recall the well-known Leibniz notation: If f is a
differentiable function of x , then the derivative f ′(x) of f is also
often denoted df

dx , even though df
dx is a limit of a quotient rather

than an actual quotient. If f ,g are differentiable functions such
that the composite function f (g) is defined on an open interval,
then f (g) is differentiable there and f (g)′(x) = f ′(g(x)g′(x),
Writing df

dx for f (g)′(x), df
du for f ′(g(x)) and du

dx for u′(x), so that the
variable u represents the function g, we can write the Chain
Rule as df

dx = df
du

du
dx . The formal cancellation of du makes it easy

to remember this rule.
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