
Lecture 5-5: Derivatives, continued

May 5, 2025

Lecture 5-5: Derivatives, continued May 5, 2025 1 / 1



Continuing with derivatives, we now show that inverses of
one-to-one differentiable functions are themselves
differentiable, provided that their derivatives are never 0.

Theorem; cf. Exercise 5.2.12, p. 155
Let f be differentiable and one-to-one on the interval [a,b] and
suppose that x0 ∈ (a,b) is such that f ′(x0) ̸= 0. Set y0 = f (x0).
Then the inverse function g = f−1, defined on the interval
[c,d] = f ([a,b]) is differentiable at y0 with g′(y0) =

1
f ′(x0)

.
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Proof.
We have already seen that [c,d] = f ([a,b]) is indeed a closed
interval. Then we have
1 = limy→y0

f (g(y))−f (g(y0))
y−y0

= limy→y0
f (g(y))−f (g(y0))

g(y)−g(y0)
g(y)−g(y0)

y−y0
.

Moreover we cannot have g(y) = g(y0) for values of y arbitrarily
close to but unequal to y0, since then the quotient f (g(y))−f (g(y0))

y−y0

as y approaches y0 through a sequence of such values would
approach 0 rather than 1. Then continuity of g at y0 forces the
first fraction to approach f ′(g(y0) = f ′(x0) ̸= 0 as y → y0, whence
the second fraction approaches 1

f ′(x0)
= g′(y0) as y → y0, as

claimed.

The same argument shows that g is not differentiable at y0 if
f ′(x0) = 0, since if it were we would have 1 = 0g′(y0).
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Example
If f (x) = xn with n ∈ N, then we have already seen that
f ′(x) = nxn−1 for all x ; we also know that f (x) has a continuous
inverse g(x) = x1/n defined for x ≥ 0. Evaluating f ′(g(x)) we get
nx

n−1
n if x > 0; taking the reciprocal we get g′(x) = 1

nx
1−n

n for
x > 0, but g′(0) does not exist, as predicted by the above proof.
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Example
Before giving a second example we recall the Fundamental
Theorem of Calculus (Theorem 7.5.1 on p. 234 of the text), which
states that any continuous function f on an interval [a,b] is the
derivative of its integral F(x) =

∫ x
a f (t)dt . We will assume this result

for now. In particular the function f (x) =
∫ x

1
1
t dt is differentiable

with f ′(x) = 1
x for x > 0. It will come as no surprise to you to learn

that f (x) is the natural logarithm of x , denoted ln x .
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Since the derivative of ln x is always positive, this function is strictly
increasing (as we will see shortly), so that it is one-to-one and has
a differentiable inverse. This inverse is none other than your old
friend g(x) = ex ; the Inverse Function Theorem implies that
g′(x) = g(x). Thus without having to assume anything about the
exponential function we have shown that there is a strictly
increasing function which equals its own derivative. I will later
give a different and independent construction of g(x),
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That functions with positive derivatives are strictly increasing
follows at once from the Mean Value Theorem. To prove that
theorem we need a result of independent interest, namely the
well-known connection between derivatives and maxima or
minima of functions.

Theorem 5.2.6, p. 151
Let the differentiable function f on the interval (a,b) have a
local maximum or minimum at x0 ∈ (a,b). Then f ′(x0) = 0.
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Proof.
For definiteness assume that x0 is a maximum; the case where it
is a minimum is similar. Taking limits as x → x−

0 , we see that
f ′(x0) ≥ 0; taking limits as x → x+

0 we see that f ′(x0) ≤ 0. Hence
f ′(x0) = 0.
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The same proof shows that if f is differentiable on the closed
interval [a,b] and has a local maximum at the left-hand
endpoint x = a, then f ′(a) ≤ 0; likewise if f has a local maximum
at the right-hand endpoint x = b, then f ′(b) ≥ 0. If instead f has
a local minimum at x = a or x = b then these inequalities are
reversed.

Rolle’s Theorem (5.3.1, p. 156)
If f is continuous on [a,b] and differentiable on (a,b) and
f (a) = f (b) then we have f ′(x) = 0 for some x ∈ (a,b).
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Proof.
Any such f must have a maximum and a minimum on [a,b]; if
these both occur at endpoints, then f is constant and there is
nothing to prove. Otherwise this result follows at once from the
preceding one.
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Now we can prove the Mean Value Theorem on p. 156
(Theorem 5.3.2).

Theorem
Let f be continuous on [a,b] and differentiable on (a,b). Then
there is x0 ∈ (a,b) with f ′(x0) =

f (b)−f (a)
b−a .

Proof.
This follows from Rolle’s Theorem applied to the function
g(x) = f (x)− x−a

b−a (f (b)− f (a)), since g(a) = g(b) = f (a).
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It easily follows that

Corollary 5.3.3, p. 157
A function f is constant on an interval (a,b) if and only if its
derivative f ′ exists and equals 0 there. If f is differentiable on
(a,b) with f ′(x) > 0 there, then f is strictly increasing on (a,b).
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Another consequence, this time that you probably have not
seen before, is that any derivative satisfies the Intermediate
Value Property, even if it is not continuous:

Darboux’s Theorem (5.2.7, p. 152)
Let f be differentiable on [a,b]. Then f ′ takes on every value c
between f ′(a) and f ′(b).

Proof.
For definiteness assume that f ′(a) < c < f ′(b); as usual the other
case is similar. Set g(x) = f (x)− cx . Then g′(a) < 0,g′(b) > 0,
whence by a previous remark any minimum of g can only occur
at a point x0 ∈ (a,b). But g must have a minimum on [a,b] and
the result follows.
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If the derivative f ′ of a differentiable function were always
continuous (as you might intuitively expect) then the last result
would follow from the Intermediate Value Theorem; but we have
already seen that this is not the case. The function f defined by
f (x) = x2 sin(1/x) for x ̸= 0, f (0) = 0 was previously shown to have
derivative equal to 2x sin(1/x)− cos(1/x) for x ̸= 0 while f ′(0) = 0
(see p. 146). What follows from the Intermediate Value Property
of derivatives is that derivatives g′ cannot have jump
discontinuities; i.e., that one cannot have limx→a g′(x) existing
but different from g′(a). Here, as mentioned last time, limx→0 f ′(x)
does not exist.

Lecture 5-5: Derivatives, continued May 5, 2025 14 / 1


