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Last time I showed that any continuous function on an interval
[a,b] is (Riemann) integrable on that interval; now I want to
prove the Fundamental Theorem of Calculus, which shows that
the integral of any such function is differentiable and in fact an
antiderivative of the function itself. I begin with a simple lemma.

Theorem 7.4.1, p. 228
A function f is integrable on an interval [a,b] if and only if it is
integrable on [a,c] and [c,b] for any c ∈ [a,b]; in this case we
have

∫ b
a f (x)dx =

∫ c
a f (x)dx +

∫ b
c f (x)dx .

Lecture 5-30: Riemann integration, continued May 30, 2025 2 / 1



Proof.
Indeed, if f is integrable on [a,b] and c ∈ [a,b] then for every
ϵ > 0 there is a partition P of [a,b] with U(f ,P)− L(f ,P) < ϵ. Add
the point c to P (if necessary) to construct a new partition P ′;
then U(f ,P ′)− L(f ,P ′) < ϵ, since L(f ,P ′) ≥ L(f ,P),U(f ,P ′) ≤ U(f ,P).
Intersecting P ′ with the intervals [a,c], [c,b] yields two partitions
P1,P2 of [a,c], [c,b], respectively, with U(f ,Pi)− L(f ,Pi) < ϵ,
whence f is integrable on both intervals. Conversely, if f is
integrable on both [a,c] and [c,b] and partitions P1,P2 of
[a,c], [c,b] are chosen so that U(f ,Pi)− L(f ,Pi) < ϵ/2, then the
union P of P1,P2 is a partition of [a,b] with U(f ,P)− L(f ,P) <
ϵ,U(f ,P) = U(f ,P1) + U(f ,P2), L(f ,P) = L(f ,P1) + L(f ,P2). As ϵ is
arbitrary the result follows.
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If a > b and f is integrable on [b,a] then we set∫ b
a f (x)dx = −

∫ a
b f (x)dx . Then the above formula holds for all

a,b,c whenever all relevant integrals are defined.
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Now I can prove a strengthened form of one of the
Fundamental Theorems of Calculus.

Theorem 7.5.1 (ii), p. 234
Let f be integrable on [a,b] and continuous at c ∈ [a,b]. Set
F(x) =

∫ x
a f (t)dt for x ∈ [a,b]. Then F is differentiable at c and

F ′(c) = f (c).
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Proof.
We already know that f is integrable on [a, x ], so the definition of

F(x) makes sense, and F(x)−F(c)
x−c =

∫ x
c f (t)dt

x−c . This last fraction is
bounded between mx and Mx , where mx is the infimum and Mx
the supremum of f in the interval between c and x . Continuity at
c forces mx ,Mx → f (c) as x → c and the result follows.

In particular, if f is continuous on [a,b] and F(x) =
∫ x

a f (t)dt , then
F ′(x) = f (x) for all x ∈ [a,b], so that f has an antiderivative; this is
what Theorem 6.29 actually says. In the special case f (t) = 1/t ,
this completes fully justifies my earlier construction of the natural
logarithm ln x : we now know that 1/x has an antiderivative,
whence I can describe ln x as the unique antiderivative of 1/x
taking the value 0 at x = 1,
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As a simple corollary we get

Theorem 7.5.1 (i)
Let f be continuous on [a,b] and F be any antiderivative of f .
Then

∫ b
a f (x)dx = F(b)− F(a).
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Proof.
The Mean Value Theorem shows that any two antiderivatives of f
differ by a constant (so that the conclusion of the theorem is
independent of the choice of F). Choosing a particular
antiderivative F and setting G(x) =

∫ x
a f (t)dt for x ∈ [a,b] we

have G(x) = F(x) + c for some constant c; plugging in x = a, we
get the desired result.
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It is also very useful to know that integration is linear.

Linearity of the integral: Theorem 7.4.2 (i),(ii), p. 230
If f ,g are integrable on [a,b] and c is constant, then f ± g and
cf are also both integrable, with∫ b

a (f±g)(x)dx =
∫ b

a f (x)dx±
∫ b

a g(x)dx ,
∫ b

a cf (x)dx = c
∫ b

a f (x)dx .
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Proof.
The second assertion is clear, since the upper sums of cf are just
the multiples by c of the upper or lower sums of f (according as
c is positive or negative). Now it suffices to show that∫ b

a (f + g)(x)dx =
∫ b

a f (x)dx +
∫ b

a g(x)dx . For this we just observe
that the infimum mc,d of f + g on any interval [c,d] is at least the
sum m′

c,d + m′′
c,d of the infima m′

c,d ,m
′′
c,d of f ,g on [c,d]; similarly

the supremum Mc,d of f + g on [c,d] is at most the sum of the
suprema M′

c,d ,M
′′
c,d of f ,g on [c,d], whence

L(f + g,P) ≥ L(f ,P) + L(g,P),U(f + g,P) ≤ U(f ,P) + U(g,P) for any
partition P. The result follows.
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I conclude with

Mean Value Theorem for integrals
Let f ,g be continuous on [a,b] with g(x) ≥ 0 for all x ∈ [a,b].
Then there is c ∈ [a,b] with

∫ b
a f (x)g(x)dx = f (c)

∫ b
a g(x)dx .
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Proof.
Letting m,M be the minimum and maximum of f on [a,b] we
have mg(x) ≤ f (x)g(x) ≤ Mg(x) on [a,b], whence

∫ b
a f (x)g(x)dx

lies between m
∫ b

a g(x)dx and M
∫ b

a g(x)dx . By the Intermediate
Value Theorem there is c ∈ [a,b] such that the conclusion
holds.

In particular, taking g to be the constant function 1, we see that
for any integrable f we have

∫ b
a f (x)dx = f (c)(b − a) for some

c ∈ [a,b]. Some authors call just this result the Mean Value
Theorem for Integrals.
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