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For the remainder of the course I will concentrate on (Riemann)
integration, as described in Chapter 7 of the text. The basic idea
is first to write down a limit defining the area between the graph
of a bounded function f on a closed bounded interval [a,b] and
the interval [a,b] on the x-axis itself, counting this area as positive
whenever the graph of f lies above the x-axis and as negative
whenever this graph lies below the axis, then (eventually) to
evaluate that limit by antidifferentiating the function f , thereby
deducing in particular that every continuous function on [a,b]
has an antiderivative (so is the derivative of another function).
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To make things as general as possible, we begin with a partition
of [a,b], that is, a finite set P = {x0, . . . , xn} of points
x0 = a < x1 < . . . < xn = b. Then P divides [a,b] into subintervals
[x0 = a, x1], . . . , [xn−1, xn = b]. We do not assume that the
subintervals [xi , xi+1] are of equal length. The gap of P is defined
to be the largest difference xi − xi−1. For each index i with
1 ≤ i ≤ n we let mi ,Mi respectively denote the infimum and
supremum of f on the interval [xi−1, xi ]. It is then intuitively clear
that the sums

∑n
i=1 mi(xi − xi−1),

∑n
i=1 Mi(xi − xi−1) are respectively

less and greater than the area we are trying to define and
evaluate. We denote these sums by L(f ,P),U(f ,P), respectively,
and call them the lower and upper sums of f with respect to P.
See Definition 7.2.1 on p. 218.

Lecture 5-28: Riemann integration May 28, 2025 3 / 1



I will show shortly that L(f ,P) ≤ U(f ,Q) for any partitions P,Q of
[a,b]; this is Lemma 7.2.4 on p. 219. It then follows that the
supremum of the set of all lower sums L(f ,P) and the infimum of
all upper sums U(f ,P) (as P runs through all partitions of [a,b])

both exist. We denote these by
∫ b

a
f (x)dx ,

∫ b
af (x)dx , respectively,

and call them the lower and upper integrals of f (see the
definition on p. 220 of the text). We say that f is
((Riemann-)integrable if its lower and upper integrals coincide; in
this case we denote their common value by

∫ b
a f (x)dx . If f ≤ g

on [a,b] then it is clear from the definition that∫ b
a

f (x)dx ≤
∫ b

a
g(x)dx and similarly with

∫
replaced by

∫
; in

particular, if both f and g are integrable, then∫ b
a f (x)dx ≤

∫ b
a g(x)dx .
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To show that L(f ,P) ≤ U(f ,Q) for any partitions P,Q of [a,b], note
first that it is clear from the definition that L(f ,P) ≤ U(f ,P) for all P.
Given P = {x0, . . . , xn}, let P ′ be obtained from P by adding one
new point y , say between xi−1 and xi . Comparing L(f ,P) to
L(f ,P ′) we find that the single term mi(xi − xi−1) is replaced by the
sum m′

i(y − xi−1) + m′′
i (xi − y), where m′

i ,m
′′
i are the respective

infima of f on [xi−1, y ] and [y , xi ]; since mi ≤ m′
i ,m

′′
i we get

L(f ,P ′) ≥ L(f ,P); similarly U(f ,P ′) ≤ U(f ,P). By induction we
deduce that L(f ,P) ≤ L(f ,R) whenever the partition R of [a,b]
contains P as a set; similarly U(f ,P) ≥ U(f ,R) in this situation
(Lemma 7.2.4, p. 219). But now since the union P ∪ Q of P,Q is a
partition of [a,b] whenever P,Q are, we deduce that
L(f ,P) ≤ L(f ,P ∪ Q) ≤ U(f ,P ∪ Q) ≤ U(f ,Q), as desired.
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Also f is integrable on [a,b] if and only if for every ϵ > 0 there is a
partition P with U(f ,P)− L(f ,P) < ϵ, since if f is integrable and ϵ is
given, we can find partitions P,Q with U(f ,P)− L(f ,Q) < ϵ; setting
R = P ∪ Q, we get U(f ,R)− L(f ,R) ≤ U(f ,P)− L(f ,Q) < ϵ, as
claimed. Equivalently, f is integrable if and only if there is a
sequence Pn of partitions of [a,b] with
limn→∞ U(f ,Pn)− L(f ,Pn) = 0. This is Theorem 7.2.8 on p. 221.
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Now consider two extreme examples.

Example
If f = c is a constant function, then it is easy to see that
L(f ,P) = c(b − a) = U(f ,P) for all partitions P of [a,b], whence f is
integrable on [a,b] and

∫ b
a f (x)dx = c(b − a). On the other

hand, if f (x) = 0 for x ∈ Q, f (x) = 1 for x /∈ Q, then for any interval
[a,b] we have L(f ,P) = 0,U(f ,P) = b − a for all partitions P, since
every subinterval [xi−1, xi ] contains at least one rational and at

least one irrational number. Thus
∫ b

a
f (x)dx = 0,

∫ b
af (x)dx = b − a,

so that f is not integrable on [a,b]. See Example 7.3.3 on p. 225.
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Many functions are integrable. In particular we have

Theorem 7.2.9, p. 222
Any continuous function f on an interval [a,b] is integrable.
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Proof.
Given ϵ > 0, use the uniform continuity of f (Theorem 4.4.7, p.
133) to choose δ > 0 so that |f (x)− f (y)| < ϵ

b−a whenever
x , y ∈ [a,b], |x − y | < δ. Then given any partition P = {x0, . . . , xn}
whose gap is less than δ (for example the regular partition
Pn = {a,a + b−a

n ,a + 2(b−a)
n , . . . ,b} for sufficiently large n) we

have U(f ,P)− L(f ,P) ≤ ϵ
b−a

∑n
i=1(xi − xi−1) = ϵ, whence f is

integrable by a previous result.
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Let f be a function on [a,b] and let P = {x0, . . . , xn} be a partition
of [a,b]. For 0 ≤ i ≤ n − 1, choose a point yi ∈ [xi , xi+1]. The
weighted sum Rf ,P =

∑n−1
i=0 (xi+1 − xi)f (yi) (which of course

depends on the choice of yi as well as f and P, but this is
suppressed from the notation) is called a Riemann sum of f (see
Exer. 7.2.6, p. 223). Clearly it lies between L(f ,P) and U(f ,P). If f is
continuous on [a,b], then you have seen that uniform continuity
of f implies that, given ϵ > 0 there is δ > 0 such that
U(f ,P)− L(f ,P) for any partition P whose gap is less than δ; then
any Riemann sum Rf ,P corresponding to f and P lies within ϵ of∫ b

a f (x)dx . With a little more work, it can be shown that the same
holds even if f is merely assumed integrable on [a,b], so that if f
is integrable on [a,b], then

∫ b
a f (x)dx is the limit of any sequence

of Riemann sums R(f ,Pn) corresponding to a sequence (Pn) of
partitions of [a,b] such that the gap of Pn goes to 0 as n → ∞.
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Note that integrability of f in the last highlighted result is crucial
here: the non-integrable function f in the last example is 0 at
every rational number, so any Riemann sum R(Pn, f ) with a
regular partition Pn of the unit interval [0, 1] with the midpoint of
each interval [xi−1, xi ] chosen as the point yi equals 0; but the
integral

∫ 1
0 f (x)dx is not defined.

As an example with a continuous f , consider limn→∞
∑n−1

i=0
n

n+i+ 1
3
.

To evaluate this limit, note first that n
n+i+ 1

3
= 1

1+
i+ 1

3
n

. Hence the

given sum is a Riemann sum for f (x) = 1
1+x on the unit interval

[0, 1] corresponding to the regular partition {0, 1/n, . . . ,1} and

the point yi =
i+ 1

3
n in the ith subinterval of this partition. The

desired limit is thus
∫ 1

0
1

1+x dx = ln 2.
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I conclude by revisiting the Thomae function h(x) that you have
seen before: recall that h(x) = 1

q if x = p
q in lowest terms and

q > 0, while h(x) = 0 if x /∈ Q. We have seen that this function is
continuous at all irrational x ∈ [0, 1] but discontinuous at all
rational such x . I claim that

∫ 1
0 h(x)dx = 0. To prove this, note first

that any lower sum L(h,P) = 0, so it suffices to show that the
upper integral of h over [0, 1] is 0.
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Given ϵ > 0 there are only finitely many positive integers q with
1/q > ϵ and thus only finitely many y ∈ [0, 1] with h(y) > ϵ/2, say
y1, . . . , yn. Choose a partition P = {x0, . . . , x2n, x2n+1} of [0, 1] such
that yi ∈ [x2i−1, x2i ] for 1 ≤ i ≤ n and

∑n
i=1(x2i − x2i−1) < ϵ/2. We

have 0 ≤ h(x) ≤ 1 for x ∈ [0, 1], whence the total contribution of
the terms Mi(x2i − x2i−1) to U(h,P) is less than ϵ/2, as is the
contribution of the remaining terms to U(h,P), since h(x) ∈ [0, ϵ/2]
if x /∈ [x2i−1, x2i ] for any i. Thus U(h,P) < ϵ; since ϵ is arbitrary, we

conclude that
∫ 1

0 h(x)dx =
∫ 1

0h(x)dx = 0, as claimed.
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