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This lecture will be devoted to review for the midterm on Friday.
You should review the convergence tests for series, specifically
the nth term test, which says that any series

∑
an with an ̸→ 0 as

n → ∞ diverges; the comparison test, which says that if
0 ≤ an ≤ bn for all but finitely many n and

∑
bn converges, then

so does
∑

an, while if instead
∑

an diverges, then so does
∑

bn.
The limit comparison test vastly enlarges the scope of the straight
comparison test; it states that if an,bn ≥ 0 for all but finitely many
n and if limn→∞

an
bn

= L exists, and if 0 < L < ∞, then
∑

an and∑
bn converge or diverge together. Also, the Ratio Test says that

if an ≥ 0 for all but finitely many n and L = limn→∞
an+1
an

exists, then∑
an converges if L < 1 and diverges if L > 1. For any series

∑
an,

if
∑

|an| converges (so that
∑

an converges absolutely, by
definition), then

∑
an converges. If

∑
an converges but not

absolutely, it is said to converge conditionally.
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There is essentially only one test for conditional convergence,
namely the Dirichlet test, which asserts that if the partial sums of∑

xk are bounded while y1 ≥ y2 ≥ . . . and yk → 0 as k → ∞, then∑
xkyk converges. In particular, the Alternating Series Test is a

special case: if y1 ≥ y2 ≥ . . . and yk → 0 as k → ∞, then∑
(−1)kyk converges.
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Next I moved on to functions from R to itself, the basic limit
definition stating that limx→a f (x) = L if and only if for every ϵ > 0
there is δ > 0 such that 0 < |x − a| < δ implies |f (x)− L| < ϵ. The
value of f (a) itself, even if undefined, is entirely irrelevant to this
definition. If limx→a f (x) exists and equals f (a), then we say that f
is continuous at a; f is continuous if it is continuous at all points of
its domain. Thus for example g(x) = 1/x is continuous even
though it is not defined at x = 0. With respect to the concepts of
open, closed, connected, and compact sets developed in
Chapter 3 of the text, f is continuous if and only if the inverse
image f−1(U) is open for every open subset U of R. If f is
continuous and C ⊂ R is connected, then so is f (C); likewise if C
is compact (closed and bounded), then so is f (C).

Lecture 5-21: Review May 21, 2025 4 / 13



In particular, one has two basic properties of continuous
functions f on closed bounded intervals [a,b]: the Intermediate
Value Property, which asserts that for every c between f (a) and
f (b) there is x ∈ [a,b] with f (x) = c; and the Extreme Value
Property, which asserts that any continuous f on [a,b] has a
maximum and minimum value on this interval. Both results are
consequences of behavior of continuous functions on
connected and compact sets described on the previous slide.
Putting them together one sees that f [a,b] is necessarily equal
to [c,d] for some closed bounded interval [c,d].
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A function f is differentiable at a if limx→a
f (x)−f (a)

x−a exists, in which
case this limit is denoted f ′(a) and called the derivative of f at a,
If f is defined only to the right of a, or only to the left of it, then
one extends this definition by replacing the limit above by a
suitable one-sided limit. If the derivative f ′ of f exists everywhere,
then f ′ need not be continuous, but it still satisfies the
Intermediate Value Property on any interval over which it is
defined. It need not however have a maximum or minimum on
such an interval, or even be bounded.

Lecture 5-21: Review May 21, 2025 6 / 13



The single most important theorem about derivatives is the Mean
Value Theorem, which says that if f is continuous on [a,b] and
differentiable on (a,b), then for some c ∈ (a,b) we have
f ′(c) = f (b)−f (a)

b−a . In particular, such an f is weakly increasing on
[a,b] if and only if f ′(x) ≥ 0 there, and similarly for weakly
decreasing functions. At a local maximum or minimum point x of
f on (a,b), we must have either that f ′(x) = 0 or f ′(x) does not
exist.
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Putting sequences, series, and functions together, I next
considered sequences fn of functions fn(x) on a subset S of R.
One says that the sequence fn converges pointwise to the
function f on S if limn→∞ fn(x) = f (x) for all x ∈ S, so that given
x ∈ S and ϵ > 0 there is an index N such that |fn(x)− f (x)| < ϵ for
any n > N; here N is allowed to depend on x as well as ϵ. If more
strongly there is a single index N that works simultaneously for all
x ∈ S, given ϵ, so that |fn(x)− f (x)| < ϵ for all n > N and x ∈ S, then
one says that fn converges uniformly to f on S and calls f the
uniform limit of the fn on S. It is quite possible for the same
sequence fn of functions to converge to its (pointwise) limit
uniformly on one subset but not another.
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The uniform limit of a sequence of continuous functions on S is
again continuous there; this is not necessarily true of a pointwise
limit. Even the uniform limit of a sequence of differentiable
functions need not be differentiable at any point; indeed, any
continuous function on [a,b] is the uniform limit of polynomial
functions (Weierstrass Approximation,Theorem) but need not be
differentiable at any point.
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Similarly, one defines the (pointwise) sum f of an infinite series∑∞
i=1 fn(x) of functions fn(x) on a set S and says that

∑
fn(x)

converges to f uniformly on S if the sequence sn(x) =
∑n

i=1 fi(x) of
partial sums of the series converges uniformly to f there. The
main technique for producing uniformly convergent series∑

fn(x) of continuous functions fn(x) on a set S is the Weierstrass
M-test, which states that

∑
fn(x) converges uniformly on S if

there is a sequence M1,M2, . . . of constants Mi such that
|fi(x)| < Mi for all x ∈ S and

∑
Mi converges. Then the sum f (x) is

continuous on S if the fi are.
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The most important examples of convergent series of functions
are Taylor series; that is, series of the form

∑∞
n=0 an(x − a)n. Any

such series has a radius of convergence R ≥ 0 with the property
that the series converges absolutely and uniformly if |x − a| < R
but diverges if |x − a| > R. Whenever the limit limn→∞

|an|
|an+1|

exists,
its value equals this radius R. The sum f (x) of a Taylor series∑∞

n=0 an(x − a)n with radius of convergence R > 0 is infinitely
differentiable on the interval (a − R,a + R) and we must have
an = f (n)(a)/n!. Any convergent Taylor series can be
differentiated or integrated term by term within the radius of
convergence.
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Specific Taylor series that you should know for the midterm are
the geometric series

∑∞
n=0 xn = 1

1−x , valid for |x | < 1; the
integrated series ln(1 − x) = −

∑∞
n=1

xn

n , valid for −1 ≤ x < 1; the
exponential series ex =

∑∞
n=0

xn

n! , valid for all x ; and the
trigonometric series
sin x =

∑∞
n=0(−1)n x2n+1

(2n+1)! , cos x =
∑∞

n=0(−1)n x2n

(2n)! , again valid for all
x . Other convergent series can be obtained from these by
changing variables, replacing x − a by c(x − a)k throughout,
where c is a constant and k is a positive integer.
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The logisitics of the tes are the same as last time; you are
permitted one sheet (front and back) of handwritten notes.
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