Lecture 5-2: Derivatives

May 2, 2025

Lecture 5-2: Derivatives May 2, 2025



Just one more property of continuous functions to discuss before
we get to derivatives, the topic of Chapter 5 in the text.

Definition 4.4.4, p. 132

We say that the function f defined on a set S is uniformly
continuous on S if for every € > 0 there is 6 > 0 such that
whenever x,y € Sand |x — y| < § we have |f(x) — f(y)| < e.
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The key difference between this property and ordinary continuity
is that, given € > 0, the same § has to work for all x, y € S; we are
not allowed to use different ¢ for different x. (The definitions of
continuity and uniform continuity, when written out in logical
form, differ only in the order of two quantifiers). For example, the
function f(x) = 1/x is continuous but not uniformly continuous on
the open interval (O, 1): taking e = 1, we have

f(1/n) =n,f(1/2n) = 2nfor all n € N. If any ¢ > O satisfied the
above definition for this value of ¢, then we could choose n with
(1/2n) < ¢, and then the values x = 1/n,y = 1/2n would
contradict this definition.
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It furns out that restricting to functions defined on closed
bounded intervals fixes the problem.

Theorem 4.4.7,p. 133

Any function f defined and confinuous on a closed bounded
interval [a, b] is uniformly continuous there.
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Given e > 0, | will show that the choice § = 1/n must satisfy the
definition for some choice of n € N. Otherwise for each such n |
would have x, n, y, € [a, b] with |x, — ya| < 1/n,|f(Xn) — f(Yn)| > €.
Then some subsequence x,, of x, would converge to some

x € [a, b] and the condition |x, — yn| < 1/n forces the
corresponding subsequence yn, of y, to converge to the same
number x. But then f(xn,, f(yn,) converge to the same limit f(x),
contradicting |f(xn) — f(yn)| > € for all n. O
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I won’t actually have occasion to use uniform continuity in the
course until later, but the very similar notion of uniform
convergence will play a major role shortly. Uniform continuity will
also play a role in the theory of intfegration.
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Now we turn to the basic definition of Chapter 5.

Definition 5.2.1, p. 148
Given a function f defined on an open interval (a, b) and
Xo € (a, b) we say that fis differentiable at xg if limy_, x, %ﬁ’@

exists. The value of this limit is denoted f'(xp).
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If f is differentiable at xy then it is also continuous there (Theorem
5.2.3, p. 148), since then

limy o (F(X) = F(X0)) = limxsx, 920 (x — x5) = F(x0) - 0= 0. A
simple application of the difference of powers formula

X" —x0 = (X = %) (X" + x"2x5 + ...+ x{~') on p. 90 shows that
the power function f(x) = x" is differentiable everywhere and
has derivative /(x) = nx"~',if n € N. In fact a slightly more
elaborate argument shows for any r € R that if f(x) = x’ for x > 0
then f/(x) = '~ for x > 0; here x" is defined as the supremum of
all powers x™/" as m/n runs through the rational numbers less
than r, if x > 1, and via reciprocals if 0 < x < 1.
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On the other hand, the function g(x) = |x| fails to be
differentiable at x = 0, since the left-hand limit lim,_,g- % =—1
fails to coincide with the right-hand limif limy_,g+ % = 1. Thatis, as
x runs through real numbers less than O but arbitrarily close to it,
the difference quotient approaches —1, while as x runs through
real numbers greater than 0 but arbitrarily close to it, the

difference quotient approaches 1. See Definition 4.6.2 on p. 141.
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The limit laws for addition and subtraction show at once that the
function f + g is differentiable at any point xg if f, g are
differentiable there and

(f+9) (x0) = f'(x0) + 9' (%), (f — 9)'(X0) = F'(X0) — g'(X0). The

f f f f
calculation 1X90I=TbedC) _ IGK)-TLe)al) 4 [a)gt~Tbalole)

shows that fg is d|fferenT|obIe at xg whenever f and g are and
(fa) (xg) = f'(x0)9(Xo) + f(X0)9'(Xo). Similarly we have the quotient
rule that 5 is differentiable at x whenever n, d are and

d(xg) # 0: then (5)(x) = d(Xo)”’(Xg)(XDr)l(Xg)d’(xo)
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The Chain Rule, stated as Theorem 5.2.5 on p. 180, is a bit trickier.
Let f be differentiable at g(xg) and g be differentiable at xg (so
that f is defined in some open interval containing g(Xp) while g is
defined in some open interval containing xg). Then the
composite function f(g) is differentiable at x; and

f(9) (x0) = F(9(X0))d (Xg). To prove this we must study the limit
limyx_x, %ﬁ)g(’@”. There are two cases. If g'(xg) # 0 then we
must have g(x) # g(Xp) for all x in some interval (xg — a, Xy + 9)

about xg. For such x we may then write

f —f f(g(x)—f -
(90)-1lga)) _ fg()-r(gba) e)-6lo) for x ¢

the result follows at once by taking limits.

(X0 — a,X% + a) and
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If @'(Xp) =0 then given e > 0 there is § > 0 such that we sfill have
HI=HACa)  £1(g(xp)gf (x0)| = [@XD=ECO) | < ¢ whenever

|x — xg| < d and g(x) # g(Xp). using the continuity of f at g(xg)
and g at x; but if g(x) = g(Xo). then trivially LID=TEC) — @ for

X # Xo. Thus f(9)'(xg) = 0 = f(9(x0))9'(Xp) in this case too.
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Set f(x) = x?sin(1/x) for x # 0, f(0) = 0 (see p. 146). Combining
the product and chain rules, we get that

f'(x) = 2xsin(1/x) — cos(1/x) for x # 0, while a direct calculation
using the definition of limit shows that /(0) = lim,_,g M -0,
since % = x has the limit 0 as x — 0, while sin(1/x) is bounded
between 1 and -1 for all x (we are applying the squeeze limit law
here). This example is interesting because f' always exists but is
discontinuous aft O; since cos(1/x) has no limit as x — 0O, the limit
limy_,o f'(Xx) does not even exist. We will return to this example
later.
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