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Just one more property of continuous functions to discuss before
we get to derivatives, the topic of Chapter 5 in the text.

Definition 4.4.4, p. 132
We say that the function f defined on a set S is uniformly
continuous on S if for every ϵ > 0 there is δ > 0 such that
whenever x , y ∈ S and |x − y | < δ we have |f (x)− f (y)| < ϵ.
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The key difference between this property and ordinary continuity
is that, given ϵ > 0, the same δ has to work for all x , y ∈ S; we are
not allowed to use different δ for different x . (The definitions of
continuity and uniform continuity, when written out in logical
form, differ only in the order of two quantifiers). For example, the
function f (x) = 1/x is continuous but not uniformly continuous on
the open interval (0, 1): taking ϵ = 1, we have
f (1/n) = n, f (1/2n) = 2n for all n ∈ N. If any δ > 0 satisfied the
above definition for this value of ϵ, then we could choose n with
(1/2n) < δ, and then the values x = 1/n, y = 1/2n would
contradict this definition.
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It turns out that restricting to functions defined on closed
bounded intervals fixes the problem.

Theorem 4.4.7, p. 133
Any function f defined and continuous on a closed bounded
interval [a,b] is uniformly continuous there.
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Proof.
Given ϵ > 0, I will show that the choice δ = 1/n must satisfy the
definition for some choice of n ∈ N. Otherwise for each such n I
would have x ,n, yn ∈ [a,b] with |xn − yn| < 1/n, |f (xn)− f (yn)| > ϵ.
Then some subsequence xnk of xn would converge to some
x ∈ [a,b] and the condition |xn − yn| < 1/n forces the
corresponding subsequence ynk of yn to converge to the same
number x . But then f (xnk , f (ynk ) converge to the same limit f (x),
contradicting |f (xn)− f (yn)| > ϵ for all n.
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I won’t actually have occasion to use uniform continuity in the
course until later, but the very similar notion of uniform
convergence will play a major role shortly. Uniform continuity will
also play a role in the theory of integration.
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Now we turn to the basic definition of Chapter 5.

Definition 5.2.1, p. 148
Given a function f defined on an open interval (a,b) and
x0 ∈ (a,b) we say that f is differentiable at x0 if limx→x0

f (x)−f (x0)
x−x0

exists. The value of this limit is denoted f ′(x0).
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If f is differentiable at x0 then it is also continuous there (Theorem
5.2.3, p. 148), since then
limx→x0(f (x)− f (x0)) = limx→x0

f (x)−f (x0)
x−x0

(x − x0) = f ′(x0) · 0 = 0. A
simple application of the difference of powers formula
xn − xn

0 = (x − x0)(xn−1 + xn−2x0 + . . .+ xn−1
0 ) on p. 90 shows that

the power function f (x) = xn is differentiable everywhere and
has derivative f ′(x) = nxn−1, if n ∈ N. In fact a slightly more
elaborate argument shows for any r ∈ R that if f (x) = x r for x > 0
then f ′(x) = rx r−1 for x > 0; here x r is defined as the supremum of
all powers xm/n as m/n runs through the rational numbers less
than r , if x > 1, and via reciprocals if 0 < x < 1.
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On the other hand, the function g(x) = |x | fails to be
differentiable at x = 0, since the left-hand limit limx→0−

|x |
x = −1

fails to coincide with the right-hand limit limx→0+
|x |
x = 1. That is, as

x runs through real numbers less than 0 but arbitrarily close to it,
the difference quotient approaches −1, while as x runs through
real numbers greater than 0 but arbitrarily close to it, the
difference quotient approaches 1. See Definition 4.6.2 on p. 141.
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The limit laws for addition and subtraction show at once that the
function f + g is differentiable at any point x0 if f ,g are
differentiable there and
(f + g)′(x0) = f ′(x0) + g′(x0), (f − g)′(x0) = f ′(x0)− g′(x0). The
calculation f (x)g(x)−f (x0)g(x0)

x−x0
= f (x)g(x)−f (x0)g(x)

x−x0
+ f (x0)g(x)−f (x0)g(x0)

x−x0

shows that fg is differentiable at x0 whenever f and g are and
(fg)′(x0) = f ′(x0)g(x0) + f (x0)g′(x0). Similarly we have the quotient
rule that n

d is differentiable at x0 whenever n,d are and
d(x0) ̸= 0; then ( n

d )
′(x0) =

d(x0)n′(x0)−n(x0)d′(x0)
d(x0)2 .
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The Chain Rule, stated as Theorem 5.2.5 on p. 150, is a bit trickier.
Let f be differentiable at g(x0) and g be differentiable at x0 (so
that f is defined in some open interval containing g(x0) while g is
defined in some open interval containing x0). Then the
composite function f (g) is differentiable at x0 and
f (g)′(x0) = f ′(g(x0))g′(x0). To prove this we must study the limit
limx→x0

f (g(x))−f (g(x0))
x−x0

. There are two cases. If g′(x0) ̸= 0 then we
must have g(x) ̸= g(x0) for all x in some interval (x0 − a, x0 + a)
about x0. For such x we may then write
f (g(x))−f (g(x0))

x−x0
= f (g(x)−f (g(x0))

g(x)−g(x0)
g(x)−g(x0)

x−x0
for x ∈ (x0 − a, x0 + a) and

the result follows at once by taking limits.
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If g′(x0) = 0 then given ϵ > 0 there is δ > 0 such that we still have
| f (g(x))−f (g(x0))

x−x0
− f ′(g(x0)g′(x0)| = | f (g(x))−f (g(x0))

x−x0
| < ϵ whenever

|x − x0| < δ and g(x) ̸= g(x0), using the continuity of f at g(x0)

and g at x0; but if g(x) = g(x0), then trivially f (g(x))−f (g(x0))
x−x0

= 0 for
x ̸= x0. Thus f (g)′(x0) = 0 = f ′(g(x0))g′(x0) in this case too.
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Example

Set f (x) = x2 sin(1/x) for x ̸= 0, f (0) = 0 (see p. 146). Combining
the product and chain rules, we get that
f ′(x) = 2x sin(1/x)− cos(1/x) for x ̸= 0, while a direct calculation
using the definition of limit shows that f ′(0) = limx→0

x2 sin(1/x)
x = 0,

since x2

x = x has the limit 0 as x → 0, while sin(1/x) is bounded
between 1 and -1 for all x (we are applying the squeeze limit law
here). This example is interesting because f ′ always exists but is
discontinuous at 0; since cos(1/x) has no limit as x → 0, the limit
limx→0 f ′(x) does not even exist. We will return to this example
later.
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