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I will conclude my treatment of series with a brief account of
Fourier series, that is, of functions defined by series of the form∑∞

n=0 an cosnx +
∑∞

n=1 bn sinnx . You will see that these series
behave very differently than power series. Just as one cannot
truly understand the grammar of one’s native language until
one studies a foreign one, so one cannot truly understand power
series until one comes to grips with how infinite series of functions
behave in a very different setting.
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My goal is to express a continuous function f (x) as the sum of a
convergent series

∑
n=0 an cosnx +

∑∞
n=1 bn sinnx . The first thing to

be said about this goal is that it cannot be achieved, even for a
very simple function like f (x) = x ! This is because any Fourier
series, being a sum of periodic functions with period 2π, can
converge only to a periodic function, which the identity function
x is not. To fix this problem, begin by restricting to the open
interval (−π, π). Then

∑∞
n=1

2(−1)n−1

n sinnx does converge to x on
this interval, though not at either endpoint ±π (it converges to 0
at both of those points).
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What’s going on here? The short answer is that the series∑∞
m=0

2
2m+1 sin(2m + 1)x is doing its best to converge to x on

[−π, π], but since it has to take the same value at π as at −π, it in
effect makes a compromise, converging to 0 = (π + (−π))/2
there. In general, Fourier series have to be restricted to the
interval [−π, π]. Then it turns out that any differentiable function
f (x) on [−π, π] admits a Fourier series expansion on that interval,
converging to f (x) if x ̸= ±π and to f (π)+f (−π)

2 at ±π. But how can
an infinite series of continuous functions on [−π, π] converge to a
discontinuous one at ±π? The answer is that the convergence is
not uniform! Nor is it absolute in general: plugging in x − π/2 into
the series for x gives twice the alternating odd harmonic series,
or 2

∑∞
m=0

(−1)m

2m+1 , which as we now know converges to π/2, but
only conditionally.
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The coefficient an of cosnx in the Fourier series of a continuous
function f (x) is given by 1

2π

∫ π
−π f (x) cosnx dx if n = 0 and

1
π

∫ π
−π f (x) cosnx for n > 0; the coefficient bn of sinnx in this series

equals 1
π

∫ π
−π f (x) sinnx dx in all cases; note that there is no point

in including the 0 function sin 0x as a term, but the term
cos 0x = 1 can occur, so that the an start at n = 0 but the bn start
at n = 1. Note also that these formulas make sense for any
continuous function, unlike the formula f (n)(a)/n! for the
coefficient of (x − a)n in the Taylor series of f , which requires that
f be infinitely differentiable at a.
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Thus many more functions can be represented as Fourier series
than Taylor series, though the price one pays for this is the
convergence of a typical Fourier series is much slower than that
of a (convergent) Taylor series. Note also that the periodicity of
the terms an cosnx ,bn sinnx of the terms in a Fourier series imply
that such a series is neither more nor less apt to converge at a
large x than a small one; there is no notion of radius of
convergence for a Fourier series.
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Another stark difference between Fourier and Taylor series
emerges from the following example. You have seen that the
Fourier series for x involves only sinnx terms; this is not surprising,
since both x and sinnx are odd functions for any n. Likewise the
series for the even function |x | involves only cosnx terms: it is
π
2 − 4

π

∑∞
m=0

cos(2m+1)x
(2m+1)2 . But x and |x | are the same function for

x ≥ 0; we thus get two Fourier series for the same function on
[0, π].
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Such behavior cannot occur for Taylor series, since the only
Taylor series at x = a that can possibly converge to a function f is
the series

∑∞
n=0

f (n)(a)
n! (x − a)n. Also observe that Fourier series

cannot generally be differentiated or integrated term by term:
differentiating the series

∑∞
n=1

2(−1)n−1

n sinnx term by term gives
the series

∑∞
n=1 2(−1)n−1 cosnx , which does not converge for any

x .
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Plugging in x = π to the series for |x | and observing that
| − π| = |π| = π, I deduce that
4
∑∞

m=0
1

(2m+1)2 = π2

2 ,
∑∞

m=0
1

(2m+1)2 = π2

8 ; since∑∞
m=1

1
(2m)2 = 1

4
∑∞

n=1
1
n2 . I get

∑∞
n=1

1
n2 = π2

6 , a famous formula
due to Euler which actually calculates the sum of the p-series at
p = 2. More generally, one can use Fourier series to work the sum∑∞

n=1
1

np for any positive even integer p; the answer turns out to
be πp times a rational number. But already for p = 3, this sum
remains a total mystery after three centuries; the best one can
do with Fourier series is to show that the alternating sum∑∞

m=0
(−1)m

(2m+1)3 of the odd reciprocal cubes is π3

32 .
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