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Last fime you learned that any Taylor series

f(x) = 3202 ak(x — a)¥ with positive (or infinite) radius of
convergence R can be infegrated term by term within the radius
of convergence, so that the series a(x) = Zk 0 C’k(iﬁ)m
converges for [x — a] < R and g(x fo 1) dt for all x in this
range. | also showed that the dn‘feren’rlo’red series

h(x) = 332, kak(x — a)*~1 also has radius of convergence R and
its term-by-term infegrated series coincides with f(x), so that f(x)
is differentiable and '(x) = h(x) for |x| < R.
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A very handy result due to the Norwegian mathematician Abel
asserts that if a Taylor series >~ ; an(x — a)" converges at

a+ R > a, then the convergence is uniform on the entire closed
interval [a, a + R], so that the sum is a continuous function on
that interval (Theorem 6.5.4, p. 193). This result follows from the
Dirichlet test for convergence of a series, which shows that that
the partial sums of >~ ; an(x — a)" are uniformly Cauchy for

x € [a,a+ R]. Here we are writing the series >~" ; an(x — a)" as
> meo(anR™)((%%9)" to apply the Dirichlet test. The same result
holds if the series converges at a — R < a, replacing [a, a + R] by
[a — R, a]. Thus, for example, since the series for — In(1 — x),

1 .
namely > 7 g % has radius of convergence 1 and also

converges (by the Alternating Series Test) at x = —1, its sum at
that point must be limy_,_;+In(1 — x) = —In2.
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In a similar way, the geometric series for s, namely
5% o(—=1)"x2", which has radius of Convergenoe 1, may be

integrated term by term to the series arctanx = Y77 5(—1 )”’2(2;%,
which also has radius of convergence 1. This time this series also
converges af both x = +1, so its sums at those points must be

+7/4.
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The series >~ ’,‘7—7 converges absolutely for all x € R, say to f(x).
Since the term-by-term differentiated series is the same series,
we have f'(x) = f(x), whence this function f equals its own
derivative. We therefore define f(x) = €* by this series; we can
even show by manipulating series that eXe¥ = et for alll
X,y € R. Next Cor;sm]jer the closely reIoTed series

s(x) =2, & ;,)HXUT o(x) =30, ¢ 2n), . Here one checks by
the ratio test that both series have infinite radius of convergence;
in applying this test to s(x). for example, one should of course
Ioc])kn Sﬁhe r]onti% 29,I3TWO successive nonzero terms

( (21)7+1)! , ( (%n+3)! , s0 that one does not divide by 0. By
differentiation one gets s'(x) = c(x), ¢/(x) = —s(x), whence by
differentiation one gets that s(x)? + c(x)? is constantly equal to its
value at 0, namely 1, since the derivative of this quantity is 0. |
define sin x = $(X), cos X = ¢(x). Note that
§"(x) = =s(x), c”(x) = —c(x). In this way | have defined the sine
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Another simple but very useful way to get new Taylor series from
old ones is to change the variable, replacing x — a by (x — a)k
throughout for some fixed positive integer k. Thus, starting with
the series sinx = 37 o(— )”% valid for all x, we get the series

3 n x6n+3
sinx® =" o(—1) enag also valid for oIIx We can also multiply

variables by constants: since ¥ = 3" o % * for all x, we also get
e = y° 2 for gl x. In the case of series with finite radii of
convergence, however, we must be careful to stay within the
inferval of convergence Thus the geometric series "7 5 x”
converges fo = for x| < 1; replacing x by 3x, we get the series

Y g 3" for 1—3x’ but this series converges only for |x| < 1/3.
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| can also work out power series expansions for functions that |
cannot even explicitly write down. For example, starting from
the geometric series L5 = 357 o(—1)"x%", valid for all x € (-1,1),

| get the series [ Lz df = Y52 o(—1)"$r7. valid for all x in the
larger interval [—1, 1], even though there is no formula for this

integral.

Lecture 5-14: Power and Taylor series: exar May 14, 2025



Adding the series for In(1 + x) and —In(1 — x), | get the series

oo x2nt] i 14+x i
23 70 5n47- Which converges fo In £ for [x| < 1. As if turns out

that any positive number y can be written as }%; forsome x € R

with |x| < 1,1 now have a convergent series which can be used
to compute the natural logarithm of any positive number.
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In general, given any function f(x) which admits a Taylor series
expansion Y7 5 an(x — a)" with a positive radius of convergence,
| can differen’rio’re this series n times and plug in x = a to deduce
that a, = (M (a)/n! for all n, where f(")(a) denotes the nth
derivative of f at a. This formula leads to a natural definition.

Definition; cf. Theorem 6.6.2, p. 199

Given an infinitely differentiable function f(x) on an interval

(a—- I? a+ R) forsome R > 0, its Taylor series at x = a is the series
Py )(0)( a)k. This is the only Taylor series at x — a that has a
chance of converging to f(x) for x — a € (=R, R). If it does
converge to f(x) on the interval (a — R, a + R) (for some R > 0)
we say that fis analytic at x = a
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Unfortunately it is in the nature of things that not all infinitely
differentiable functions are analytic at all points. For example, it
is known that the Taylor series at x = a of an infinitely
differentiable function can be an arbitrary Taylor series, so that
there is no guarantee that this series will converge at any point
other than x = a. Secondly, even if the Taylor series of a function
f at x = a does converge, it can converge to a function different
from f. | will explore these matters in more detail later.
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