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Last time you learned that any Taylor series
f (x) =

∑∞
k=0 ak(x − a)k with positive (or infinite) radius of

convergence R can be integrated term by term within the radius
of convergence, so that the series g(x) =

∑∞
k=0

ak (x−a)k+1

k+1
converges for |x − a| < R and g(x) =

∫ x
a f (t)dt for all x in this

range. I also showed that the differentiated series
h(x) =

∑∞
k=1 kak(x − a)k−1 also has radius of convergence R and

its term-by-term integrated series coincides with f (x), so that f (x)
is differentiable and f ′(x) = h(x) for |x | < R.
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A very handy result due to the Norwegian mathematician Abel
asserts that if a Taylor series

∑∞
n=0 an(x − a)n converges at

a + R > a, then the convergence is uniform on the entire closed
interval [a,a + R], so that the sum is a continuous function on
that interval (Theorem 6.5.4, p. 193). This result follows from the
Dirichlet test for convergence of a series, which shows that that
the partial sums of

∑∞
n=0 an(x − a)n are uniformly Cauchy for

x ∈ [a,a + R]. Here we are writing the series
∑∞

n=0 an(x − a)n as∑∞
n=0(anRn)(( x−a

R )n to apply the Dirichlet test. The same result
holds if the series converges at a − R < a, replacing [a,a + R] by
[a − R,a]. Thus, for example, since the series for − ln(1 − x),
namely

∑∞
n=0

xn+1

n+1 has radius of convergence 1 and also
converges (by the Alternating Series Test) at x = −1, its sum at
that point must be limx→−1+ ln(1 − x) = − ln 2.
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In a similar way, the geometric series for 1
1+x2 , namely∑∞

n=0(−1)nx2n, which has radius of convergence 1, may be
integrated term by term to the series arctan x =

∑∞
n=0(−1)n x2n+1

2n+1 ,
which also has radius of convergence 1. This time this series also
converges at both x = ±1, so its sums at those points must be
±π/4.
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Example

The series
∑∞

n=0
xn

n! converges absolutely for all x ∈ R, say to f (x).
Since the term-by-term differentiated series is the same series,
we have f ′(x) = f (x), whence this function f equals its own
derivative. We therefore define f (x) = ex by this series; we can
even show by manipulating series that exey = ex+y for all
x , y ∈ R. Next consider the closely related series
s(x) =

∑∞
n=0

(−1)nx2n+1

(2n+1)! ,c(x) =
∑∞

n=0
(−1)nx2n

(2n)! . Here one checks by
the ratio test that both series have infinite radius of convergence;
in applying this test to s(x), for example, one should of course
look at the ratio of two successive nonzero terms
(−1)nx2n+1

(2n+1)! , (−1)n+1x2n+3

(2n+3)! , so that one does not divide by 0. By
differentiation one gets s′(x) = c(x),c′(x) = −s(x), whence by
differentiation one gets that s(x)2 + c(x)2 is constantly equal to its
value at 0, namely 1, since the derivative of this quantity is 0. I
define sin x = s(x), cos x = c(x). Note that
s′′(x) = −s(x),c′′(x) = −c(x). In this way I have defined the sine
and cosine functions without geometry or trigonometry.Lecture 5-14: Power and Taylor series: examples May 14, 2025 5 / 1



Another simple but very useful way to get new Taylor series from
old ones is to change the variable, replacing x − a by (x − a)k

throughout for some fixed positive integer k . Thus, starting with
the series sin x =

∑∞
n=0(−1)n x2n+1

(2n+1)! , valid for all x , we get the series

sin x3 =
∑∞

n=0(−1)n x6n+3

(2n+1)! , also valid for all x . We can also multiply

variables by constants: since ex =
∑∞

n=0
xn

n! for all x , we also get
e2x =

∑∞
n=0

2nxn

n! for all x . In the case of series with finite radii of
convergence, however, we must be careful to stay within the
interval of convergence. Thus the geometric series

∑∞
n=0 xn

converges to 1
1−x for |x | < 1; replacing x by 3x , we get the series∑∞

n=0 3nxn for 1
1−3x ; but this series converges only for |x | < 1/3.
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Example
I can also work out power series expansions for functions that I
cannot even explicitly write down. For example, starting from
the geometric series 1

1+x3 =
∑∞

n=0(−1)nx3n, valid for all x ∈ (−1, 1),

I get the series
∫ x

0
1

1+t3 dt =
∑∞

n=0(−1)n x3n+1

3n+1 , valid for all x in the
larger interval [−1, 1], even though there is no formula for this
integral.
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Adding the series for ln(1 + x) and − ln(1 − x), I get the series
2
∑∞

n=0
x2n+1

2n+1 , which converges to ln 1+x
1−x for |x | < 1. As it turns out

that any positive number y can be written as 1+x
1−x for some x ∈ R

with |x | < 1, I now have a convergent series which can be used
to compute the natural logarithm of any positive number.
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In general, given any function f (x) which admits a Taylor series
expansion

∑∞
n=0 an(x −a)n with a positive radius of convergence,

I can differentiate this series n times and plug in x = a to deduce
that an = f (n)(a)/n! for all n, where f (n)(a) denotes the nth
derivative of f at a. This formula leads to a natural definition.

Definition; cf. Theorem 6.6.2, p. 199
Given an infinitely differentiable function f (x) on an interval
(a − R,a + R) for some R > 0, its Taylor series at x = a is the series∑∞

k=0
f (k)(a)

k! (x − a)k . This is the only Taylor series at x − a that has a
chance of converging to f (x) for x − a ∈ (−R,R). If it does
converge to f (x) on the interval (a − R,a + R) (for some R > 0)
we say that f is analytic at x = a.
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Unfortunately it is in the nature of things that not all infinitely
differentiable functions are analytic at all points. For example, it
is known that the Taylor series at x = a of an infinitely
differentiable function can be an arbitrary Taylor series, so that
there is no guarantee that this series will converge at any point
other than x = a. Secondly, even if the Taylor series of a function
f at x = a does converge, it can converge to a function different
from f . I will explore these matters in more detail later.
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