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Last time I started to cover infinite series
∑∞

k=0 fk(x) of functions
defined on an interval I, showing that if there are positive
constants M0,M1, . . . such that

∑∞
k=0 Mk converges and

|fk(x)| ≤ Mk on I, then
∑∞

k=0 converges uniformly to its sum f (x)
on I, so that in particular f (x) is continuous on I if the fk are.
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Now I want to consider the most important special case, namely
the one in which there is a constant a with fk(x) = ak(x − a)k for
some constant ak . I call the series

∑∞
k=0 ak(x − a)k a Taylor series

in x ; in the special case a = 0 it is called a power series. Any such
series converges trivially at x = a to a0, thanks to a convention
for Taylor series that 00 = 1. The first result is that Taylor series
cannot flip wildly back and forth between convergence and
divergence as |x − a| increases from 0.

Interval of Convergence Theorem: Theorem 6.5.1, p. 191

If
∑∞

k=0 ak(x − a)k converges at x = a + R for |R| > 0, then it
converges absolutely and uniformly for [a − M,a + M] for any M
with 0 ≤ M < |R|.
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Proof.
If
∑∞

k=0 akRk converges, then in particular akRk → 0 as k → ∞,
whence one has |akxk | = |akRk ||( x

R )
k | ≤ (M

|R |)
k for k sufficiently

large and
∑∞

k=0 |akxk | converges uniformly on [−M,M] by the
Weierstrass M-test.

As a consequence, given any Taylor series
∑

k ak(x − a)k , either it
converges absolutely for all x ∈ R, or it converges only for x = a,
or there is some R > 0 such that the series converges for any
x ∈ (a − R,a + R) but diverges for any x with |x − a| > R. The
series may or may not converge, and if it does converge may do
so absolutely or conditionally, at x = a + R and x = a − R; these
cases are deliberately left ambiguous.
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In the first case one says that
∑

k ak(x − a)k has infinite radius of
convergence; in the second case it has radius of convergence
0. In the last case one says that this series has radius of
convergence R.
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Example

The series
∑∞

k=0
(x−a)k

k! has infinite radius of convergence, as
follows from the Ratio Test. The series

∑∞
k=0 k!(x − a)k radius of

convergence 0, by the same test. The series
∑∞

k=0(x − a)k has
radius of convergence 1, diverging at both endpoints x = a − 1
and x = a + 1. The series

∑∞
k=1

(−1)k (x−a)xk

k also has radius of
convergence 1; this last series converges at x = a + 1 but
diverges at x = a − 1.
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There is a useful formula for the radius of convergence of a Taylor
series

∑∞
k=0 ak(x − a)k under an extra hypothesis.

Formula for Radius of Convergence; cf. Exer. 6.5.7, p. 196

If R = limk→∞
|ak |

|ak+1|
exists (allowing ∞ as a possible limit), then R is

the radius of convergence of the Taylor series
∑∞

k=0 ak(x − a)k .
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This follows at once from the Ratio Test: we have
limk→∞

|ak+1(x−a)k+1|
|ak (x−a)k | = |x−a|

R , whence if |x − a| < R the Taylor series
converges absolutely (and uniformly for |x − a| < M, for any
M < R), while if |x − a| > R the Taylor series diverges. The
ambiguous cases of x = a ± R, which are not settled by this test,
are irrelevant to the definition of the radius of convergence.
Note that the key ratio here is | ak

ak+1
|, not |ak+1

ak
| as in the Ratio Test.

Lecture 5-12: Power and Taylor series May 12, 2025 8 / 14



I now digress a bit from Taylor series to discuss term-by-term
differentiation of sequences of functions in general. There is no
guarantee in general that even the uniform limit f of a sequence
of differentiable functions is differentiable at any point. We will
see later that in fact any continuous function on a closed
bounded interval is the uniform limit of polynomial functions on
this interval and that there are continuous functions that are not
differentiable at any point. Nevertheless, we have the following
result.
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Theorem 6.4.3, p. 188
Let fn be a pointwise convergent sequence of functions with
continuous derivatives on an interval I = [a,b] such that the
sequence f ′n converges uniformly on I, say to g, and let
f (x) = limn→∞ fn(x). Then fn converges uniformly on I to f , f is
differentiable on I, and we have f ′ = g on I.
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Proof.
Integrability of uniformly convergent sequences guarantees that
limn→∞(fn(x)− fn(x0)) = limn→∞

∫ x
x0

f ′n(x)dx = f (x)− f (x0) =∫ x
x0

g(t)dt for x0, x ∈ I. Now the result follows at once from the
Fundamental Theorem of Calculus, together with the continuity
of g.
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Proposition 6.5.7, p. 195
Given a Taylor series

∑∞
n=0 an(x − a)n with a positive (or infinite)

radius of convergence R, its sum f is differentiable on
(a − R,a + R), with derivative f ′(x) given by the term-by-term
differentiated series

∑∞
n=1 nan(x − a)n−1. We also have∫ x

a f (t)dt =
∑∞

n=0 an
(x−a)n+1

n+1 for |x − a| < R.
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Proof.
The second assertion follows at once since integration
commutes with uniform limits. If

∑∞
n=0 anRn converges, with

R > 0, so that in particular, anRn → 0 as n → ∞, then the
differentiated series

∑∞
n=1 nan(x − a)n−1 converges absolutely

and uniformly for x − a ∈ [−M,M] for any M ∈ (0,R) by
comparison with the series

∑∞
n=0 n(M

R )n−1, since we have
|nan(x − a)n−1| < n(M

R )n−1 for sufficiently large n and∑
n=0 n(M

R )n−1 converges by the Ratio Test. In view of the second
assertion, it follows that the original series and the term-by-term
differentiated series have the same radius of convergence.
Since the differentiated series converges uniformly for |x − a| < M
for any M < R, the result now follows from the previous one.
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Starting from the geometric series, which is the only Taylor series
we know how to sum at this point, we can use this result to vastly
enlarge our repertoire of series with known sums. For example,
we have

∑∞
n=0

xn+1

n+1 = − ln(1 − x) for |x | < 1. Note in this case that
the series converges as x = −1 even though the geometric series
does not. We would expect that

∑∞
n=0

(−1)n+1

n+1 = − ln(2); but note
that we cannot yet prove this with the tools we have so far. I will
state a result later that will justify this formula. Differentiating the
given series term by term, we also get 1

(1−x)2 =
∑∞

n=1 nxn−1 for
|x | < 1.
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