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I will begin by showing that sequences behave in the way one
would expect under arithmetic operations.

Limit law for addition: Theorem 2.3.3 (ii), p. 50
If the sequences sn, tn converge to L,M, respectively, then sn + tn
converges to L + M.

Proof.
This proof is called an ϵ/2 proof, for reasons that will shortly
become clear. Given ϵ > 0, choose indices N1,N2 such that
|sn − L), |tn − M| are both less than ϵ/2 for n ≥ N1,N2, and let
N = max{N1,N2}. For any n ≥ N we then have
|sn + tn − L−M| ≤ |sn − L|+ |tn −M| < (ϵ/2+ ϵ/2) = ϵ by the Triangle
Inequality, showing that sn + tn → L + M as n → ∞, as desired.

The same argument shows that sn − tn → L − M as n → ∞.
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Next we have

Limit law for multiplication: Theorem 2.3.3 (iii)
If sn → L, tn → M, as n → ∞, then sntn → LM.

Proof.
This is another ϵ/2 proof but slightly more complicated than the
previous one. Begin by observing that
sntn − LM = sn(tn − M) + (sn − L)M. Given ϵ > 0, choose N1,N2 so
that n ≥ N1 implies |sn − L||M| < ϵ

2 ; note that any N1 works if
M = 0, while if M ̸= 0 one can choose such that n ≥ N1 implies
|sn − L| < ϵ

2|M| . Next choose an index N2 such that n ≥ N2 implies
that |sn − L| < 1, |sn| < |L|+ 1; finally choose N3 such that n ≥ N3
implies |tn − M| < ϵ

|L|+1 . Set N = max{N1,N2,N3}. The triangle
inequality then shows that n ≥ N implies that |sntn − LM| =
|sn(tn − M) + (sn − L)M| ≤ |sn||tn − M|+ |sn − L||M| < ϵ

2 + ϵ
2 = ϵ, as

desired.
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In particular, if sn → L as n → ∞ then we have csn → cL as n → ∞
for any c ∈ R.

Finally, we have

Limit law for reciprocals

If sn → L as n → ∞ and L ̸= 0 then 1
sn

→ 1
L as n → ∞.
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Proof.

First of all, taking ϵ = |L|
2 , we have an index N such that

|sn − L| < |L|
2 for n ≥ N, whence in particular |sn| > |L|

2 for any n ≥ N
and 1

sn
is at least defined for n ≥ N. Next, given any ϵ > 0 there is

an index N1 such that n ≥ N,N1 implies |sn − L| < ϵ L2

2 , whence we
also have | 1

sn
− 1

L | =
|sn−L|
|snL| < |sn−L|

L2/2 < ϵ. Taking N2 = max{N,N1} we

deduce that | 1
sn
− 1

L | < ϵ for n > N2 and so 1
sn

→ 1
L , as desired.
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Combining the last two results we immediately get

Limit law for division: Theorem 2.3.3 (iv)

If sn → L, tn → M with M ̸= 0, then sn
tn

→ L
M as n → ∞.

Another very useful result is

Sandwich or squeeze theorem: Exercise 2.3.3, p. 54
If sn ≤ tn ≤ un for all n and sn → L,un → L as n → ∞, then tn → L as
n → ∞.
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Proof.
Indeed, given ϵ > 0 we have indices N1,N2 such that n ≥ N1,N2
implies |sn − L|, |un − L| < ϵ, whence both sn,un lie in the open
interval (L − ϵ, L + ϵ), forcing tn ∈ (L − ϵ, L + ϵ), |tn − L| < ϵ for
n ≥ max{N1,N2}, as desired.

Example

One has sinn
n → 0 as n → ∞ since −1

n ≤ sinn
n ≤ 1

n and −1
n , 1

n → 0 as
n → ∞.
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Example
In homework you have shown that every positive real number
has a (unique) square root. I will show later that every positive
number x has a unique positive nth root, for every positive
integer n. Denoting this root as usual by x1/n one then has
n1/n → 1 as n → ∞. To see this set xn = n1/n − 1. The binomial
theorem then shows that n = (1 + xn)

n ≥ n(n−1)
2 x2

n , whence

0 ≤ xn ≤
√

2
n−1 . The squeeze theorem then shows xn → 0 as

n → ∞, as claimed.
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A slightly more complicated calculation shows that

Example

For any p > 0 and positive integer k one has nk

(1+p)n → 0 as
n → ∞. Choose an integer m > k . For n > 2m one has
(1 + p)n >

(n
m

)
pm = n(n−1)···(n−m+1)

m! pm > nmpm

2mm! , whence
0 < nk

(1+p)n < 2mm!
pm nk−m for n > 2m. Since I have showed that

nk−m → 0 as n → ∞ (since k − m < 0) the result follows.
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I will conclude with the geometric series
∑∞

n=0 xn, which
converges to 1

1−x if |x | < 1 and diverges otherwise (see p. 73).
Indeed, it is clear from previous examples that this series diverges
if x = ±1. For x ̸= 1 one has

∑n
i=0 xn = 1−xn+1

1−x ; this last expression
has no finite limit if |x | > 1 but it has the limit 1

1−x if |x | < 1.
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