Lecture 4-4: The real numbers, concluded

April 4, 2025

Lecture 4-4: The real numbers, concluded

April 4, 2025

1/1

I will begin by treating decimal expansions more thoroughly than I did on the first day of class. Given one such, say $0.d_1d_2d_3...$ with each d_i an integer between 0 and 9, it denotes the infinite sum $\sum_{i=0}^{\infty} d_i 10^{-i}$. Such an infinite sum is called an infinite series and will be officially discussed only later in the course; but already I have the tools I need to define the sum of this particular series. The intuition is that whatever this sum turns out to be, it should be larger than the truncated sum $\sum_{i=1}^{n} d_i 10^{-i}$ for any n, and in fact the sum should be the least real number larger than all truncated sums. Accordingly I define $\sum_{i=1}^{\infty} d_i 10^{-i}$ to be the least upper bound sup S of the set $S = \{\sum_{i=1}^{n} d_i | 0^{-1} : n \in \mathbb{N}\}$.

Next I have to check that *S* is bounded above. Indeed, any truncated sum $\sum_{i=1}^{n} d_i 10^{-i} \le \sum_{i=1}^{n} 9 \cdot 10^{-i} = 1 - 10^{-n}$, by the well-known formula for the sum of a finite geometric series (Example 2.7.5, p. 73). In particular, all truncated sums are less than 1, so *S* is bounded above by 1 and indeed has a least upper bound.

Conversely, given any real number $x \in [0, 1]$, I can inductively define a decimal expansion $0.d_1d_2...$ that equals x. Start by letting d_1 be the largest integer between 0 and 9 with $\frac{d_1}{10} \le x$; if d_1, \ldots, d_n have been defined, let d_{n+1} be the largest integer between 0 and 9 with $\sum_{i=1}^{n} d_i 10^{-i} + d_{n+1} 10^{-n-1} \le x$. Then by the construction every sum $x - 10^{-m} < \sum_{i=1}^{m} d_i 10^{-1} \le x$. Since one easily proves by induction that $10^{-m} < m^{-1}$ for any $m \in \mathbb{N}$ and for any $\epsilon > 0$ we have $m^{-1} < \epsilon$ for some *m* by the Archimedean Property it follows that x is an upper bound for all the sums $\sum_{i=1}^{m} d_i 10^{-i}$ but $x - \epsilon$ is not, for any $\epsilon > 0$. Hence x is indeed the least upper bound of the set of all such sums, as desired.

イロン 不良 とくほう 不良 とうほう

The decimal expansion of a real number x between 0 and 1 is unique, apart from the case where x admits one expansion $0.d_1d_2...$ ending in a string of 0s (so that there is *i* with $d_i \neq 0$ but $d_j = 0$ for all j > i). In that case there is an equal expansion $0.e_1e_2...$ ending in a string of 9s; more precisely, we have $e_j = d_j$ for $j < i, e_i = d_i - 1$, and $e_k = 9$ for k < i. It is not difficult to check that this is the only situation in which the decimal expansion of a real number is not unique.

I now review the notion of uncountability, showing that the closed interval I = [0, 1] is uncountable, so that there is no surjective map f from \mathbb{N} onto I. (See theorem 1.5.6 on p. 27 and its proof in the text.) If there were such an f, let $x_i = f(j) = \sum_{i=1}^{\infty} d_{ii} 10^{-i}$, the image of $j \in \mathbb{N}$ under f. I need to find a real number $x \in I$ different from x_i for all j. Enlarge the set of x_i if necessary to include all expansions ending in a string of 9s equalling an x_i ending in a string of 0s and vice versa, so that every expansion different from that of any x_i definitely represents a number not equal to any x_i Then for each *i* choose a digit $e_i \neq d_{ii}$; for example, set $e_i = 0$ if $d_{ii} \neq 0$ and $e_i = 1$ if $d_{ii} = 0$. Then the expansion $x = \sum_{i=1}^{\infty} e_i 10^{-i}$ is different from x_i for all *i*, as required, so that there is no surjective map f, as claimed.

It turns out that the Least Upper Bound Property of $\mathbb R$ is intimately tied up with its uncountability. Indeed, it is *almost*, but not quite, true that if an infinite subset T of \mathbb{R} satisfies the Least Upper Bound Property in the sense that the least upper bound of any bounded subset of T lies in T, then T is uncountable. There is a missing hypothesis: I must also assume that T is dense (not dense in anything else, just dense), in the sense that for any $x, y \in T$ with x < y there is $z \in T$ with x < z < y. Indeed the natural numbers \mathbb{N} also satisfy the Least Upper Bound Property, but are countable; this is possible only because \mathbb{N} is *discrete* in the sense that between any two consecutive natural numbers n and n+1there are no natural numbers.

ヘロン 人間 とくほ とくほ とう

Now there are many proper subsets T of \mathbb{R} (other than \mathbb{R} itself) satisfying both the Least Upper Bound and Greatest Lower Bound Properties, in the above sense that the supremum of any subset of T that is bounded above lies in T and the infimum of any subset of T bounded below also lies in T; for example, any closed interval $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ has this property (but an open or half open interval like [a, b) or (a, b) does not, since it excludes one or both endpoints a, b. A set T with this property is called *closed* in \mathbb{R} . It is easy to check that any *finite* union $\bigcup_{i=1}^{n} T_i$ of closed sets T_i is again closed, as is any intersection $\cap_i T_i$ of closed subsets of \mathbb{R} , finite or not. An *infinite* union of closed sets T_i need not be closed. There is also a notion of open subset of \mathbb{R} , but this is *not* the same as a non-closed subset!

・ロン ・回 と ・ ヨ と … ヨ

A very important inequality for real numbers is

The Triangle Inequality; Example 1.2.5, p. 8

For $x, y \in \mathbb{R}$ we have $|x + y| \le |x| + |y|$

Proof.

I have $-|x| \le x \le |x|, -|y| \le y \le |y|$, whence by addition I get $-(|x| + |y|) \le x + y \le |x| + |y|$; this immediately gives the desired result.

ヘロン 人間 とくほ とくほ とう

A much deeper fact is that this same result holds in higher dimensions: defining the norm $||\vec{v}||$ of a vector $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$ to be $\sqrt{x_1^2 + \ldots + x_n^2}$ we have $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$; a proof of this can be found in many books or online. Here one can draw a picture of an actual triangle (with vertices $\vec{0}, \vec{x}$, and $\vec{x} + \vec{y}$) to illustrate the result, unlike the situation with $x, y \in \mathbb{R}$.