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| will begin by freating decimal expansions more thoroughly than
| did on the first day of class. Given one such, say 0.0,a)d; .. .,
with each d; an integer between 0 and 9, it denotes the infinite
sum ", di10~". Such an infinite sum is called an infinite series
and will be officially discussed only later in the course; but
dlready | have the tools | need to define the sum of this
particular series. The intuition is that whatever this sum turns out
to be, it should be larger than the truncated sum Y7L, 0;10~ for
any n, and in fact the sum should be the least real number larger
than all truncated sums. Accordingly | define 3%, 0;10~" fo be
the least upper bound sup S of the set S = {3/, ;107" : n € N}.
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Next | have to check that S is bounded above. Indeed, any
truncated sum 37, 107 < 3°7,9.107 =1~ 107", by the
well-known formula for the sum of a finite geometric series
(Example 2.7.5, p. 73). In particular, all fruncated sums are less
than 1, so Sis bounded above by 1 and indeed has a least
upper bound.
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Conversely, given any real number x € [0, 1], | can inductively
define a decimal expansion 0.0, d, ... that equals x. Start by
letting d; be the largest integer between 0 and 9 with % < x; if
d,...,dn have been defined, let d, 1 be the largest integer
between 0 and 9 with 3, 0i10~ 4+ dj,.1107"~! < x. Then by the
construction every sum x — 107 < 3", gj10~! < x. Since one
easily proves by induction that 10~ < m~! for any m € N and for
any e > 0 we have m~! < e for some m by the Archimedean
Property it follows that x is an upper bound for all the sums

S, 0107  but x — e is not, for any ¢ > 0. Hence x is indeed the
least upper bound of the set of all such sums, as desired.
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The decimal expansion of a real number x between 0 and 1 is
unigue, apart from the case where x admits one expansion
0.010,... ending in a string of Os (so that there is i with g; # 0 but
d; =0forallj > ). In that case there is an equal expansion
0.e1e,... ending in a string of 9s; more precisely, we have g; = d;
forj<i,ej=d;—1,and g, =9 for k < i. It is not difficult to check
that this is the only situation in which the decimal expansion of a
real number is not unique.
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| now review the notion of uncountability, showing that the
closed interval | = [0, 1] is uncountable, so that there is no
surjective map f from N onto /. (See theorem 1.5.6 on p. 27 and
its proof in the text.) If there were such an f, let

X = () = > 12, d,-,-]O*", the image of j € Nunder f. | need fo find
areal number x € [ different from x; for all j. Enlarge the sef of X if
necessary to include all expansions ending in a string of 9s
equalling an x; ending in a string of Os and vice versa, so that
every expansion different from that of any x; definitely represents
a number not equal to any x; Then for each i choose a digit

e; # dj; forexample, set ¢, =0if d; #0and g; = 1 if d; = 0. Then
the expansion x = °, ;107" is different from x; for all i, as
required, so that there is no surjective map f, as claimed.
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It turns out that the Least Upper Bound Property of R is intimately
fied up with its uncountability. Indeed, it is almost, but not quite,
true that if an infinite subset T of R satisfies the Least Upper
Bound Property in the sense that the least upper bound of any
bounded subset of T liesin T, then T is uncountable. There is a
missing hypothesis: | must also assume that T is dense (not dense
in anything else, just dense), in the sense that for any x, y € T with
X < ythereisz e T with x < z < y. Indeed the natural numbers N
also satisfy the Least Upper Bound Property, but are countable;
this is possible only because N is discrefe in the sense that
between any two consecutive natural numbers nand n+ 1
there are no natural numbers.
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Now there are many proper subsets T of R (other than R itself)
satisfying both the Least Upper Bound and Greatest Lower
Bound Properties, in the above sense that the supremum of any
subset of T that is bounded above lies in T and the infimum of
any subset of T bounded below also lies in T; for example, any
closed interval [a,b] = {x € R: a < x < b} has this property (but
an open or half open interval like [a, b) or (a, b) does not, since it
excludes one or both endpoints a, b. A set T with this property is
called closedin R. It is easy to check that any finite union U}, T;
of closed sets T; is again closed, as is any intersection N;T; of
closed subsets of R, finite or not. An infinite union of closed sefts T;
need not be closed. There is also a notion of open subset of R,
but this is not the same as a non-closed subset!
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A very important inequality for real numbers is

The Triangle Inequality; Example 1.2.5, p. 8
For x,y € R we have |[x + y| < |x| + |y|

Il have —|x| < x < |x|,—|y| <y < |y|. whence by addition | get
—(Ix] + |y]) < x+y < |x| + |y|; this immediately gives the desired
result. O
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A much deeper fact is that this same result holds in higher
dimensions: defining the norm ||V|| of a vector

X=(x1,...,Xn) € R"tobe \/x? + ... + x5 we have

I|1X + yI| < [IX]] + ||Y]|: a proof of this can be found in many books
or online. Here one can draw a picture of an actual triangle

(with vertices 0, X, and X + ¥) to illustrate the result, unlike the
situation with x, y € R.

Lecture 4-4: The real numbers, concluded April 4, 2025 10/1



