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I will begin by treating decimal expansions more thoroughly than
I did on the first day of class. Given one such, say 0.d1d2d3 . . .,
with each di an integer between 0 and 9, it denotes the infinite
sum

∑∞
i=0 di10−i . Such an infinite sum is called an infinite series

and will be officially discussed only later in the course; but
already I have the tools I need to define the sum of this
particular series. The intuition is that whatever this sum turns out
to be, it should be larger than the truncated sum

∑n
i=1 di10−i for

any n, and in fact the sum should be the least real number larger
than all truncated sums. Accordingly I define

∑∞
i=1 di10−i to be

the least upper bound sup S of the set S = {
∑n

i=1 di10−1 : n ∈ N}.
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Next I have to check that S is bounded above. Indeed, any
truncated sum

∑n
i=1 di10−i ≤

∑n
i=1 9 · 10−i = 1− 10−n, by the

well-known formula for the sum of a finite geometric series
(Example 2.7.5, p. 73). In particular, all truncated sums are less
than 1, so S is bounded above by 1 and indeed has a least
upper bound.
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Conversely, given any real number x ∈ [0, 1], I can inductively
define a decimal expansion 0.d1d2 . . . that equals x . Start by
letting d1 be the largest integer between 0 and 9 with d1

10 ≤ x ; if
d1, . . . ,dn have been defined, let dn+1 be the largest integer
between 0 and 9 with

∑n
i=1 di10−i + dn+110−n−1 ≤ x . Then by the

construction every sum x − 10−m <
∑m

i=1 di10−1 ≤ x . Since one
easily proves by induction that 10−m < m−1 for any m ∈ N and for
any ε > 0 we have m−1 < ε for some m by the Archimedean
Property it follows that x is an upper bound for all the sums∑m

i=1 di10−i but x − ε is not, for any ε > 0. Hence x is indeed the
least upper bound of the set of all such sums, as desired.
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The decimal expansion of a real number x between 0 and 1 is
unique, apart from the case where x admits one expansion
0.d1d2 . . . ending in a string of 0s (so that there is i with di 6= 0 but
dj = 0 for all j > i). In that case there is an equal expansion
0.e1e2 . . . ending in a string of 9s; more precisely, we have ej = dj
for j < i,ei = di − 1, and ek = 9 for k < i. It is not difficult to check
that this is the only situation in which the decimal expansion of a
real number is not unique.
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I now review the notion of uncountability, showing that the
closed interval I = [0, 1] is uncountable, so that there is no
surjective map f from N onto I. (See theorem 1.5.6 on p. 27 and
its proof in the text.) If there were such an f , let
xj = f (j) =

∑∞
i=1 dji10−i , the image of j ∈ N under f . I need to find

a real number x ∈ I different from xj for all j. Enlarge the set of xj if
necessary to include all expansions ending in a string of 9s
equalling an xj ending in a string of 0s and vice versa, so that
every expansion different from that of any xj definitely represents
a number not equal to any xj Then for each i choose a digit
ei 6= dii ; for example, set ei = 0 if dii 6= 0 and ei = 1 if dii = 0. Then
the expansion x =

∑∞
i=1 ei10−i is different from xi for all i, as

required, so that there is no surjective map f , as claimed.
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It turns out that the Least Upper Bound Property of R is intimately
tied up with its uncountability. Indeed, it is almost, but not quite,
true that if an infinite subset T of R satisfies the Least Upper
Bound Property in the sense that the least upper bound of any
bounded subset of T lies in T , then T is uncountable. There is a
missing hypothesis: I must also assume that T is dense (not dense
in anything else, just dense), in the sense that for any x , y ∈ T with
x < y there is z ∈ T with x < z < y . Indeed the natural numbers N
also satisfy the Least Upper Bound Property, but are countable;
this is possible only because N is discrete in the sense that
between any two consecutive natural numbers n and n + 1
there are no natural numbers.
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Now there are many proper subsets T of R (other than R itself)
satisfying both the Least Upper Bound and Greatest Lower
Bound Properties, in the above sense that the supremum of any
subset of T that is bounded above lies in T and the infimum of
any subset of T bounded below also lies in T ; for example, any
closed interval [a,b] = {x ∈ R : a ≤ x ≤ b} has this property (but
an open or half open interval like [a,b) or (a,b) does not, since it
excludes one or both endpoints a,b. A set T with this property is
called closed in R. It is easy to check that any finite union ∪n

i=1Ti
of closed sets Ti is again closed, as is any intersection ∩iTi of
closed subsets of R, finite or not. An infinite union of closed sets Ti
need not be closed. There is also a notion of open subset of R,
but this is not the same as a non-closed subset!
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A very important inequality for real numbers is

The Triangle Inequality; Example 1.2.5, p. 8
For x , y ∈ R we have |x + y | ≤ |x |+ |y |

Proof.
I have −|x | ≤ x ≤ |x |,−|y | ≤ y ≤ |y |, whence by addition I get
−(|x |+ |y |) ≤ x + y ≤ |x |+ |y |; this immediately gives the desired
result.
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A much deeper fact is that this same result holds in higher
dimensions: defining the norm ||~v || of a vector
~x = (x1, . . . , xn) ∈ Rn to be

√
x2

1 + . . .+ x2
n we have

||~x + ~y || ≤ ||~x ||+ ||~y ||; a proof of this can be found in many books
or online. Here one can draw a picture of an actual triangle
(with vertices ~0, ~x , and ~x + ~y) to illustrate the result, unlike the
situation with x , y ∈ R.
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