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I will now derive some fundamental properties of continuous
functions on closed bounded intervals; these are used
constantly in calculus.
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Theorem 4.4.1, p. 129
Let K ⊂ R be a compact set and f a real-valued function
continuous on K . Then the range f (K ) of f on K is also compact.

Let yk be a sequence of points in f (K ) with yk = f (xk), xk ∈ K .
Then the sequence xk has a subsequence, say xnk , converging
to x ∈ K , since K is closed, whence ynk = f (xnk ) converges to
y = f (x). This simultaneously shows that f (K ) must be bounded
(since otherwise I could choose the yk so that no subsequence
of it is bounded) and closed, as desired.
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In particular, since closed intervals [a,b] are compact, we get
that f [a,b] is closed and bounded whenever f is continuous on
the interval [a,b]. In particular, any such function f takes on a
maximum and a minimum on [a,b], since as a closed and
bounded set it must contain both its supremum and infimum.
Note that this result depends crucially on the closedness of the
interval: the functions f (x) = x and g(x) = 1/x are both
continuous on the open interval (0, 1), but neither takes on a
maximum or minimum value on this interval (and the function g
is not even bounded there).
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A more striking result with immediate applications is the
following.

Theorem 4.5.2, p. 136
Let f be a continuous function on a connected subset C of R.
Then the range f (C) is also connected.

Let A,B be disjoint open and closed subsets of D = f (C) whose
union is D. Then f−1(A), f−1(B) are disjoint open and closed
subsets of C whose union is C, whence one or the other of them
is empty. This forces one or the other of A and B to be empty, as
claimed.

In particular, since we have seen that the connected subsets of
R are exactly the intervals (open, half-open, or closed, and
bounded or unbounded at both ends), it follows that the range
of a continuous function on an interval is an interval.
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As an immediate consequence of the previous result we get

Intermediate Value Theorem (4.5.1, p. 136)
A continuous function f on a closed bounded interval [a,b]
takes on every value between f (a) and f (b); that is, if c lies
between f (a) and f (b), then there is x ∈ [a,b] with f (x) = c.

A further remarkable consequence is

Theorem
If f is continuous and one-to-one on an interval [a,b] then it is
(strictly) monotone (either strictly increasing or strictly
decreasing) on this interval.
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Proof.
Otherwise we would have x , y , z ∈ [a,b] with x < y < z and either
f (x) < f (y) > f (z) or f (x) > f (y) < f (z). In either case there is some
c simultaneously lying between f (x) and f (y) and between f (y)
and f (z) such that f takes the value at least once in the interval
(x , y) and again in (y , z). This contradicts f being one-to-one.

Putting together the Intermediate and Extreme Value Theorems,
we see that the range of a continuous function f on a closed
bounded interval [a,b] is a closed bounded interval [c,d]. If f is
one-to-one on [a,b] then we can say more: either
c = f (a),d = f (b), in which case f is strictly increasing on [a,b], or
c = f (b),d = f (a), in which case f is strictly decreasing on [a,b].
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Moreover, we have

Theorem; cf. Exercise 4.5.8, p. 140
If f is continuous and strictly monotonic on [a,b], sending this
interval to [c,d], then the inverse function g of f , mapping [c,d]
to [a,b], is also continuous.

Indeed, it suffices to show that the inverse image of an open
subinterval of [a,b] is an open subinterval of [c,d]; but this
follows at once from the monotonicity and the Intermediate
Value Theorem.
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Now we can write down a large family of continuous functions
that are inverses of other continuous functions. For example, for
every positive integer n, the function fn sending x to xn is strictly
increasing and continuous on the positive real line R+ = [0,∞).
The inequality (1 + x)n ≥ 1 + nx , valid for all positive x by the
Binomial Theorem, together with the elementary observation
(1/x)n = 1/xn, then shows that the range of this function on R+ is
all of R+. Hence the inverse function gn sending x to x1/n is well
defined and continuous on R+, mapping it onto R+. If n is odd,
then fn is strictly increasing on all of R, whence gn is well defined,
continuous, and increasing on R as well. For any rational number
m/n, we can then define xm/n to be (x1/n)m for any x ∈ R+. This
function is well defined, increasing, and continuous on R+.
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Another beautiful consequence of the Intermediate Value
Theorem is that a large number of equations involving
continuous functions are guaranteed to have solutions, even if
we cannot write down these solutions explicitly. For example,
consider the equation cos x = x . There is no formula for any x ∈ R
satisfying this equation; but if we set f (x) = cos x − x , then f is a
continuous function with f (0) = 1 > 0 and f (1) = cos1 − 1 < 0; so
there must be some x ∈ (0, 1) with f (x) = 0, cos x = x . In fact, since
f is easily seen to be strictly decreasing in this interval, there is a
unique such x . We could even approximate x to arbitrary
accuracy by using, say, Newton’s Method from calculus. Note
that you learn nothing from applying the Intermediate Value
Theorem to either cos x or x in this example; the key is to apply it
to the difference cos x − x .
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As a “real-life” application, imagine that mountaineer hikes up a
mountain, reaching the top in 24 hours; he then walks down the
mountain, following the same path in reverse, the following day.
No matter how irregularly he hikes (for example, how many
breaks he takes and how long he rests at each break), his
positions f (t),g(t) along the trail at a fixed time t for each of the
days are continuous functions of t . If we attach coordinates to
these positions so that the bottom of the mountain is labelled 0,
the top 1, then f (0)− g(0) is negative while f (24)− g(24) is
positive. Hence there is a time t0 of day such that the hiker is at
the same spot on the trail on both days at time t0.
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Now how would you explain this last result to your grandmother
(or to someone who knows nothing about mathematics)? You
could invoke the following thought experiment: imagine two
hikers hiking on the same day, say Monday, one following the
path of our hiker going up on Monday, the other tracing the
path he will follow on Tuesday, but doing this on Monday. The
two hikers must meet along the trail. The time t0 that they meet
then has the required property.
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Turning now (as I did in the last lecture) to discontinuous
functions, given a function f defined but discontinuous at a
point a, I introduce a measure of the discontinuity of f at a. For
all δ > 0, let Mδ be the supremum of all differences f (y)− f (z) as
y , z ranges over the interval (a − δ,a + δ) intersected with the
domain of f ; take Mδ = ∞ if the differences are not bounded
above on (a − δ,a + δ). Then M1/n is a nonnegative decreasing
function of n (since for all n one of the differences is 0). Let ωaf
be the limit of M1/n as n → ∞ (or set ωaf = ∞ if M1/n = ∞ for all n).
We call ωaf the oscillation of f at a.
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Then we have ωaf = 0 if and only if f is continuous at a. Indeed, if
f is discontinuous at a, then for some ϵ > 0 and all positive
integers n, there is an with |an − a| < 1/n and |f (an)− f (a)| > ϵ,
whence it follows at once that ωaf ≥ ϵ. Conversely, if ωaf > ϵ,
then for all n there must be an,bn with
|an − a| < 1/n, |bn − a| < 1/n, and f (an)− f (bn) > ϵ, whence one
of |f (an)− f (a)|, |f (bn)− f (a)| is greater than ϵ/2 and f is
discontinuous at a. Moreover, it is not difficult to show that for
any f and any integer n, the set of points a with ωaf > 1/n is
closed in R (see Exercise 4.6.8, p. 143). The upshot is that for any
f , the set of points in its domain D at which it is discontinuous is a
countable union of closed subsets of D. Using this fact, one can
show (as previously mentioned) that there is no real-valued
function continuous at every rational number but discontinuous
at every irrational one.
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