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I now finally take up functions, the bread and butter of calculus.
The first order of business is to decide what the limit of a function
should be at a point, generalizing the limit of a sequence.

Lecture 4-28: Limits of functions and continuity April 28, 2025 2 / 1



Definition 4.2.1, p. 116
Given a real-valued function f defined on a subset A of R and a
point x of A, we say that f has the limit L as x approaches a and
write limx→a f (x) = L if for every ε > 0 there is δ > 0 such that
|f (x)− L| < ε whenever 0 < |x − a| < δ and x ∈ A.

This definition is similar to that of a limit of a sequence, but note
that the real parameter δ replaces the index parameter N in that
definition. Also note that the hypothesis of the requirement on δ
reads 0 < |x − a| < δ, not |x − a| < δ; thus the value of f at a,
even if undefined, is entirely irrelevant to the existence of the
limit. An equivalent way to formulate this hypothesis is to say that
whenever (sn) is a sequence of points in A different from x that
converges to it, then f (sn) converges to L.
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Thus for example we have limx→2(x2 + 3) = 7, since given ε > 0
we let δ = min(ε/5, 1). Then if |x − 2| < δ we have in particular
that |x − 2| < 1, |x + 2| < 5, whence
|x2 = 3− 7| = |x2 − 4| = |x − 2||x + 2| < 5ε/5 < ε, as desired. Note
that in this case there was no need to assume that
0 < |x − 2| < δ, since |x2 + 3− 7| < ε even if x = 2.

On the other hand, limx→0 sin 1/x does not exist; that is, there is
no L such that limx→0 sin 1/x = L. To prove this, suppose contrarily
that such an L exists. Taking ε = 1/2, we note for any δ > 0 that
0 < 2

(4n+1)π ,
2

(4n+3)π < δ for sufficiently large n. But the values of

sin 1/x at x = 2
(4n+1)π ,

2
(4n+3)π are respectively 1 and −1 for any n.

We would therefore have to have |1− L|, | − 1− L| < 1/2, which
we already showed is impossible when we showed that
limn→∞(−1)n does not exist. See Example 4.2.6 on p. 119,
particularly the graph given there.
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One has the same limit laws for functions (with the same proofs)
as for sequences, so that if limx→a f (x) = L, limx→a g(x) = M, then
limx→a(f (x) + g(x)) = L + M, limx→a(f (x)− g(x)) =
L −M, limx→a f (x)g(x) = LM, and limx→a

f (x)
g(x) =

L
M , provided that

M 6= 0 (Corollary 4.2.4, p. 119). The proof is the same as for
sequences. In particular, for any constant c, we have
limx→a cf (x) = cL in this situation.
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In evaluating a limit limx→a f (x), one is always tempted to just
plug in a for x , so that the limit would be f (a). This does not hold
for arbitrary functions f and numbers a; in intuitive terms, it may
not be possible to draw the graph of f (x) near the point x = a
without lifting the pencil from the page. There are however
many functions f and values a for which this holds, enough that
it is worth making the following definition.

Definition 4.3.1, p. 122
We say that f is continuous at x = a if limx→a f (x) = f (a), or
equivalently for every ε > 0 there is δ > 0 with |f (x)− f (a)| < ε
whenever x ∈ A and |x − a| < δ. We say that f is continuous (on
A) if it is continuous at every point of A.
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One can reformulate this definition in terms of sequences, as
follows.

Theorem 4.3.2 (iii), p. 123
A function f defined at a ∈ A is continuous at that point if and
only if for all sequences sn of points in A converging to a we
have that f (sn) converges to f (a).

Indeed, if f is continuous at a and sn → a as n→∞, then given
ε > 0 there is δ > 0 such that |x − a| < δ and x ∈ A imply that
|f (x)− f (a)| < ε; in turn, there is an index N such that for any
n > N we have |sn − a| < δ, whence f (sn)→ f (a) as n→∞.
Conversely, if the sequence criterion holds and ε > 0, suppose for
a contradiction that the choice δ = 1/n never satisfies the
definition of continuity for any n, so that there is
sn ∈ A, |sn − a) < 1/n, but |f (sn)− f (a)| > ε. Then we have sn → a
but f (sn) 6→ f (a), contradicting the sequence criterion.
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In particular, if a ∈ A is an isolated point, meaning that for some
ε > 0 we have |x − a| > ε for all x ∈ A with x 6= a, then the only
sequences sn of points in A converging to a have sn = a for all
sufficiently large n, whence trivially f (sn)→ f (a). Thus any
function on A is continuous at any isolated point of A. The
definition of continuity at a point of A has substance only for limit
(that is, non-isolated) points of A. Notice also that there are two
ways that a function f defined at a ∈ A might be discontinuous
there. If limx→a f (x) exists and equals L, but f (a) 6= L, then f is
discontinuous at a but becomes continuous there if we redefine
f (a) to be L. We say that the discontinuity of f at a is removable
in this case. If limx→a f (x) does not exist then no matter how f (a)
is defined, f is not continuous at that point.
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There is a chain rule for continuous functions. It states

Theorem 4.3.9, p. 126
If f ,g are functions such that f is continuous at a and g is
continuous at f (a), then the composite function g(f ) is
continuous at a.

Given ε > 0 there is δ > 0 such that whenever |b − f (a)| < δ and
g(b) is defined we have |g(b)− g(f (a))| < ε. In turn, there is
δ1 > 0 such that whenever |xa| < δ1 and f (a) is defined we have
|f (x)− f (a)| < δ. Putting these together, we find that whenever
|x − a| < δ1 and f (x),g(f (x)) are both defined we have
|g(f (x))− g(f (a))| < ε, as desired.
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There is a very elegant way to formulate the definition of
continuity on a set with using εs or δs at all. Recall for any subset
A of R we say that a subset V of A is open in A if it is the
intersection U ∩ A of an open subset U of R and A; we define a
subset of A to be closed in A similarly. Recall also that for any
real-valued function f and subset S of R we define f−1(S) (the
inverse image of S) to be the set of points x such that f (x) (is
defined and) lies in S. Then we have

Theorem
A function f is continuous (on its domain) if and only if the inverse
image f−1(U) is open for any open subset U of R.
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Proof.
If F is continuous on its domain A, then let U ⊂ R be open and
x ∈ f−1(U), so that f (x) = y ∈ U. Choose ε > 0 so that the open
interval (y − ε, y+ε) ⊂ U and choose δ > 0 so that the image
f ((x − δ, x + δ) ∩ A) of the intersection of the open interval
(x − δ, x + δ) and A lies in (y − ε, y + ε). Then
(x − δ, x + δ) ∩ A ⊂ f−1(U), so that f−1(U) is open in A, as desired.
Conversely, if the openness condition holds, x ∈ A, and ε > 0,
then set y = f (x). The inverse image f−1(y − ε, y + ε) is then open
in A, whence there is δ > 0 such that (x − δ, x + δ) ∩ A ⊂ f−1(U).
This says exactly that f is continuous at x , as desired.

In particular, using this criterion, it is very easy to show that any
composition of continuous functions is continuous (Theorem
4.3.9, p. 126).
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I will explore the consequences of this criterion in conjunction
with connected and compact subsets of R in future lectures. For
now, I shift the focus from nice (that is, continuous) functions to
nasty ones.

Example
Let g(x) be the function defined via g(x) = 1 if x ∈ Q,g(x) = 0 if
x 6∈ Q. (See p. 112 of the text.). Then I claim that f is
discontinuous (not continuous) at every x ∈ R. To prove this,
observe first that there is a sequence (sn) of rational numbers
converging to x , since Q is dense in R. Similarly, there is a
sequence (tn) of rational numbers converging to x −

√
2, and

then (tn +
√

2) is a sequence of irrational numbers converging to
x . We have g(xn) = 1 for all n while g(tn +

√
2) = 0 for all n,

whence in any event either g(sn) fails to converge to g(x) or
g(tn +

√
2) fails to converge to g(x). Thus g is not continuous at x .

The graph of g is visually indistinguishable from the union of the
two lines y = 0 and y = 1 in the xy-plane; certainly it cannot be
drawn without lifting the pencil from the paper.

Lecture 4-28: Limits of functions and continuity April 28, 2025 12 / 1



Example
A considerably more subtle example is the following one, due to
Thomae (see p. 114 of the text). Define t(x) via
t(0) = 1, t(x) = 1/n if x = m/n ∈ Q in lowest terms with
n > 0, x 6= 0, and finally t(x) = 0 if x 6∈ Q. Then I claim that t is
continuous at all irrational x , but discontinuous at all rational x . To
prove this, suppose first that x is rational. Then t(x) 6= 0, by the
definition of t , but there is a sequence sn of irrational numbers
converging to x with g(sn) = 0 for all n, so that t is discontinuous
at x . On the other hand if x /∈ Q, then given ε > 0 there is N ∈ N
with 1

n < ε for n > N. For 1 ≤ i ≤ N there is a minimum distance
di > 0 between x and any multiple of 1/i. Taking δ to be the
minimum of d1, . . . ,dN , we find that |t(y)| < ε if |y − x | < δ,
whether or not y is rational. Hence t is continuous at x , as
claimed. It turns out, by the way, that the opposite behavior is
impossible: there is no function f continuous at every x ∈ Q but
discontinuous at every x 6∈ Q.
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I conclude by observing that it is false that the image f (U) of an
open set U under a continuous function f is open (consider for
example constant functions). Likewise the image f (C) of a
closed set C under a continuous function f need not be closed
(take f (x) = 1/x and C to be the set of positive integers),
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