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This lecture will be entirely devoted to review for the midterm on
Friday. I begin with the fundamental property that distinguished
the real numbers from the rational ones and makes it possible to
do calculus on the former, namely the Least Upper Bound
Property that every nonempty set S of real numbers that is
bounded above has a least upper bound (or supremum);
likewise every nonempty set S of real numbers that is bounded
below has a greatest lower bound (or infimum).
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I constructed the real number r as a so-called cut Cr of rational
numbers, more precisely taking Cr to consist of the rational
numbers strictly less than r . Then r ≤ s if and only if Cr ⊆ Cs. The
cut C corresponding to any nonempty set S of real numbers that
is bounded above is simply the union of the cuts Cs
corresponding to each element s of S, so that the Least Upper
Bound Property is satisfied. Standard arithmetic operations on
real numbers can be performed on cuts, removing largest
elements as necessary; for example, the negative of a cut C
consists by definition of the negatives of all rational numbers not
in C, with the largest number of this last set removed if there is
one.
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Having constructed the real numbers, I turned to sequences
and series. A sequence s = sn is just a choice of real numbers sn,
one for every n ∈ N. A series

∑∞
i=1 ti is just by definition the

sequence sn of its partial sums, where sn =
∑n

i=1 ti . The sequence
sn converges to the (finite) limit L if for every ϵ > 0 there is an
index N such that |sn − L| < ϵ whenever n ≥ N; a series

∑∞
i=1 ti thus

converges to its finite sum S if and only if for every ϵ > 0 there is
an index N such that |

∑n
i=1 ti − S| < ϵ whenever n ≥ N. Be careful

not to confuse a sequence (ti) with the series
∑∞

i=1 ti whose
terms are the ti . For example, if ti = 1/i, then ti → 0 as i → ∞, but
the series

∑∞
i=1 ti diverges to ∞; that is, its partial sums get

arbitrarily large.
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The Monotone Convergence Theorem guarantees that a
monotone sequence (tn), that is, one such that either tn ≤ tn+1
for all n or tn ≥ tn+1 for all n, converges if and only if it is bounded,
so that there is M ∈ R with |tn| < M for all n. As an immediate
consequence, a series

∑∞
i=1 ai with ai ≥ 0 for all i converges if

and only if its partial sums are bounded. A direct calculation
shows that the geometric series

∑∞
i=0 r i converges if and only if

|r | < 1; its sum in this case is 1
1−r . On the other hand, the

harmonic series
∑∞

i=1
1
i has unbounded partial sums and

accordingly diverges.
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Any sequence an always has a monotone subsequence
bk = ank (so that the indices ni satisfy n1 < n2 < . . .). In particular,
if ak is bounded, so that the ak all lie in a closed bounded
interval [a,b], then ak has a subsequence converging to some
c ∈ [a,b]; this is the Bolzano-Weierstrass Theorem. More generally,
a sequence sn converges if and only if it is Cauchy in the sense
that for every ϵ > 0 there is an index N with |sn − sm| < ϵ for
n,m > N. One can give an alternative construction of the real
numbers using Cauchy sequences rather than (Dedekind) cuts.

Lecture 4-23: Review April 23 2025 6 / 14



Turning now to infinite series, it follows at once from the above
results that a series

∑
ak with ak ≥ 0 for all but finitely many k

either has sn → ∞ as n → ∞, where sn =
∑n

k=1 ak , or (sn)
converges; the latter holds if and only if the set of sn is bounded.
We have two main tests to verify this last hypothesis: the
Comparison Test, which says that if

∑
ak ,

∑
bk are two series with

0 ≤ ak ≤ bk for all but finitely many k and if
∑

bk converges, so
does

∑
ak ; if

∑
ak diverges, so does

∑
bk . This result is

considerably broadened by the Limit Comparison Test, which
says that if the series

∑
ak ,

∑
bk have ak ,bk ≥ 0 for all but finitely

many k , and if L = limk→∞
ak
bk

(exists and) is finite and nonzero,
then

∑
ak converges if and only if

∑
bk does.
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To get started with.applying these tests, we need a library of
series with known convergence behavior. The p-series
Hp =

∑∞
k=1

1
kp (for constant p) provide such a library: using the

Cauchy Condensation Test, which says that a series
∑

ak with
ak ≥ ak+1 ≥ . . . and ak → 0 as k → ∞ converges if and only if∑∞

k=0 2kak converges, together with a suitable geometric series,
we get that the series Hp converges if and only if p > 1.
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Recall also the standard limit laws for sequences: if sn → s, tn → t
as n → ∞, then sn + tn → s + t , sn − tn → s − t , sntn → st , as n → ∞.
Also sn

tn
→ s

t as n → ∞, provided that t ̸= 0. For series, if
∑

an,
∑

bn
converge to S, T , respectively, then

∑
(an + bn),

∑
(an − bn)

converge to S + T , S − T , respectively. There is however no
relationship between the convergence of

∑
an,

∑
bn and that

of
∑

anbn.
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For general series
∑

an (not necessarily with nonnegative terms
an), we have that

∑
an converges whenever it converges

absolutely, so that
∑

|an| also converges. If
∑

an converges but
not absolutely, then we say it converges conditionally. We have
the Alternating Series Test, which says that

∑∞
k=1(−1)k−1ak

converges whenever a1 ≥ a2 ≥ . . . ,ak → 0 as k → ∞. Much
more generally, we have the Dirichlet Test, which says that∑

xkyk converges if the partial sums of
∑

xk are bounded and in
addition y1 ≥ y2 ≥ . . . , yk → 0 as k → ∞.
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I ended up with some basic facts about the topology of the real
line; that is, about open and closed subsets of real numbers. A
subset U of R is open if whenever x ∈ U there is ϵ > 0 (depending
on x) with the open interval (x − ϵ, x + ϵ) ⊂ U; a subset C of R is
closed if every convergent sequence of points xn of C has its
limit x also in C. Any union of open sets is open, as is any finite
intersection of open sets. Correspondingly, any intersection of
closed sets is closed, as is any finite union of closed sets.
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A subset S of R is called connected if one cannot write S as the
union of its nonempty intersections with U and C, where U and C
are disjoint subset of R with U open and C closed. Using the
Least Upper Bound property, it is not difficult to show that any
interval I ⊂ R, open, half-open, or closed, and bounded or
unbounded, is connected. Conversely, a subset of R is
connected if and only if it is such an interval.
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A subset S of R is compact if it is both closed and bounded, or
equivalently if and only if every sequence of points in S has a
convergent subsequence whose limit lies in S. The notions of
connectedness and compactness will both play important roles
later on in the course when I discuss continuous functions.

Lecture 4-23: Review April 23 2025 13 / 14



Finally, some logistics: you will do all your work on the test paper
and are permitted one sheet (front and back) of handwritten
notes.
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