Lecture 4-21: Basic topology of the real numbers

April 21, 2025

Lecture 4-21: Basic topology of the real nu

ъ

April 21, 2025

1/1

Following part of Chapter 3 of the text, I present some basic definitions arising in something called the topology of the real line.

Recall that in the lecture on April 11 I defined a subset S of \mathbb{R} to be closed if it contains the limit of any convergent series of its points. I warned you at that time that while there is also a notion of open set, an open set is *not* just one that is not closed! Now the time has come to define this notion.

Definition 3.2.1, p. 88

A subset S of \mathbb{R} is called *open* if whenever $x \in S$ there is $\epsilon > 0$ (depending on x) such that the open interval $(x - \epsilon, x + \epsilon) = \{y \in \mathbb{R} : x - \epsilon < y < x + \epsilon\}$ is a subset of S. By convention, the empty set is also considered open.

In particular, an open interval (a, b) (or a, ∞)) is an open subset of \mathbb{R} , just as a closed interval $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ (or $[a, \infty)$) is a closed subset. A half-open interval $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$ is neither closed nor open.

The most fundamental property of open sets is then

Theorem 3.2.3, p. 89

Any union of open sets is open. Any finite intersection $\bigcap_{i=1}^{m} U_i$ of open sets U_1, \ldots, U_m is open.

The assertion about unions is clear; the one about intersections follows since if $x \in U_i$ for all *i*, so that there are $\epsilon_1, \ldots, \epsilon_m$ with $9x - \epsilon_i, x + \epsilon_i) \subset U_i$, then we have $(x - \epsilon, x + \epsilon) \subset \bigcap_{i=1}^m U_i$, where ϵ is the minimum of $\epsilon_1, \ldots, \epsilon_m$.

イロン イ理 とくほ とくほ とう

The relationship between open and closed sets is given by

Theorem 3.2.13, p. 92

A set $U \in \mathbb{R}$ is open if and only if its complement *C* (consisting of all $x \in \mathbb{R}$ not in *U*) is closed.

Indeed, if U is open and (s_n) is a convergent sequence of points not in U with limit s, then we cannot have $s \in U$, lest there be an $\epsilon > 0$ with $(s - \epsilon, s + \epsilon) \subset U$, contradicting $|s_n - s| < \epsilon$ for all indices n larger than a fixed one N. If instead U is closed and $x \notin U$, then suppose for every *i* there is $x_i \in (x - 1/i, x + 1/i), x \in U$. Then the sequence (x_n) clearly converges to $x \notin U$, a contradiction, since the x_i lie in U. Hence there must be an *i* with $(x - 1/i, x + 1/u) \subset C$ and C is open.

イロト イポト イヨト イヨト 三日

Since the complement of a union of sets is the intersection of their complements, we get

Theorem 3.2.14, p. 92

Any intersection of closed sets is closed. Any finite union $\cup_{i=1}^{m} C_i$ of closets C_i is closed.

In particular, given any subset S of \mathbb{R} , the intersection of all closed subsets of \mathbb{R} containing S is the unique smallest closet of \mathbb{R} containing S, called its closure and denoted \overline{S} . See Definition 3.2.11 on p. 91.

Thus, as a well-known saying goes, "sets are not like doors": most subsets of \mathbb{R} are neither open nor closed. One property of doors does however (almost) carry over to sets.

Theorem; cf. Theorem 3.4.6, p. 104

The only subsets of $\mathbb R$ that are both open and closed are the empty set \emptyset and $\mathbb R$ itself.

Proof.

Suppose for a contradiction that A is a nonempty proper open and closed subset of \mathbb{R} with complement B. Then there is an interval I = [a, b] such that both A and B have nonempty intersection with *I*. For definiteness assume $b \in B$. Since *B* is open there is $\epsilon > 0$ with $(b - \epsilon, b + \epsilon) \subset B$, so that the supremum c of $A \cap I$ is strictly less than b; similarly it is strictly greater than a. Then there is a sequence (x_n) of points in A with $x_n \in (c - 1/n, c]$ and likewise a sequence (y_n) of points in B with $y_i \in [c, c+1/n)$. The sequences $(x_n), (y_n)$ then both converge to c, forcing $c \in A \cap B$, a contradiction. Note that if we define a subset of an interval / (open, half-open, or closed) to be open (or closed) in *I* if it is the intersection of an open (or closed) subset of \mathbb{R} and *I*, then the same argument shows that the only open and closed subsets of I are the empty set and I itself.

< ロ > < 同 > < 回 > < 三

Example

Next I consider a very interesting example of a closed subset of \mathbb{R} very different from a closed interval. This is the Cantor set C, discussed pn pp. 85-88 in the text. It is easiest to define C as consisting of all points $\sum_{i=0}^{\infty} a_i 3^{-i}$, where coefficient a_i is 0 or 2. Note that two such expansions $\sum a_i 3^{-i}$, $\sum b_i 3^{-i}$ are equal if and only if $a_i = b_i$ for all *i*. Given a sum $x = \sum_{i=0}^{\infty} a_i e^{-i}$ in C, let $f(x) = \sum_{i=0}^{\infty} b_i 2^{-i}$, where $b_i = a_i/2 = 0$ if $a_i = 0$ and $b_i = 1$ if $a_i = 2$. This map is surjective (but not injective), whence C is uncountable (since the range of f is the entire interval [0, 1], which is uncountable).

ヘロン 人間 とくほ とくほ とう

This last observation suggests that C is large; but on the other hand another way of describing C makes it seem small. Start with the closed interval $C_1 = [0, 1]$ and remove the open middle third (1/3, 2/3), obtaining the union C_2 of the two disjoint closed intervals $l_1 = [0, 1/3]$ and $l_2 = [2/3, 1]$, of total length 2/3. Then remove the open middle third of each l_i , obtaining thereby a disjoint union C_3 of four closed intervals of total length 4/9. Inductively, if C_i has been defined and is the union of 2^i disjoint closed intervals $[a_i, b_i]$ each of length 3^{-i} , so that the total length of C_i is $(2/3)^i$, then remove the open middle third $(\frac{2a+b}{3}, \frac{a+2b}{3})$ from this interval, thereby producing a union C_{i+1} of 2^{i+1} disjoint closed intervals of total length $(2/3)^{i+1}$.

<ロ> (四) (四) (三) (三) (三)

Then the Cantor set C can alternatively be realized as the intersection of all the C_i . Since each C_i is closed, so is C. Since the length of C_i (that is, the total length of the closed intervals making up C_i) is $(2/3)^i$ and $(2/3)^i \rightarrow 0$ as $i \rightarrow \infty$, one can argue that the length of C is 0, so that C is small. The two contradictory indications given above of the size of C are what makes this set interesting.

A subset S of \mathbb{R} that is *not* the disjoint union of its nonempty intersections $S \cap U, S \cap C$ with and open set U and closed set C is called connected; see Definition 3.4.4 on p. 104. The argument above shows that any interval in \mathbb{R} (open, half-open, or closed, and bounded or unbounded on either end) is connected. On the other hand, no other subset S of \mathbb{R} is connected, for if a subset S contains points a, b but not c, with a < c < b, then it is the disjoint union of its intersections with $(-\infty, c)$ and (c, ∞) , which are the same as its respective intersections with $(\infty, c]$ and $[c,\infty)$, so that each of these intersections is nonempty, open, and closed in S.

There is another very important kind of subset of \mathbb{R} , called **compact**. A compact subset of \mathbb{R} is one that is both closed and bounded; equivalently, one such that every sequence of points in it has a convergent subsequence whose limit also lies in it (see Definition 3.3.1 on p. 96). Thus a closed interval [a, b] is compact but an open interval (a, b) (with a < b) is not. Compact and connected subsets of \mathbb{R} play a very important role in two theorems you will see later in the course, called the Intermediate Value Theorem and Extreme Value Theorem. I will discuss these

theorems when I start covering continuous functions after the

midterm.

Lecture 4-21: Basic topology of the real nu