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Following part of Chapter 3 of the text, | present some basic
definitions arising in something called the topology of the real
line.
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Recall that in the lecture on April 11 | defined a subset S of R to
be closed if it contains the limit of any convergent series of ifs
points. | warned you at that time that while there is also a notion
of open set, an open set is nof just one that is not closed! Now
the time has come to define this notion.

Definition 3.2.1, p. 88

A subset S of R is called open if whenever x € Sthereise > 0
(depending on x) such that the open interval
(X—e,x+e)={yeR:x—e<y<Xx+e€}isasubset of S. By
convention, the empty set is also considered open.

In particular, an open interval (a, b) (or a, o)) is an open subset
of R, just as a closed interval [a,b] = {x e R: a < x < b} (or

[0, 00)) is a closed subset. A half-open interval

[a,b) ={x € R: a < x < b} isneither closed nor open.

Lecture 4-21: Basic topology of the real nu April 21, 2025 3/1



The most fundamental property of open sets is then

Theorem 3.2.3, p. 89

Any union of open sets is open. Any finite intersection N, U; of
open sets Uy, ..., Un is open.

The assertion about unions is clear; the one about intersections
follows since if x € U; for all i, so that there are ¢, ..., em With

Ox — €, X +¢€) C U, then we have (x —e,x +¢) C N2, U;, where e s
the minimum of €1, ..., em.
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The relationship between open and closed sets is given by

Theorem 3.2.13, p. 92

A set U € R is open if and only if its complement C (consisting of
all x € R notin U) is closed.

Indeed, if U is open and (sp) is a convergent sequence of points
not in U with limit s, then we cannot have s € U, lest there be an
e >0with (s —€,5+ ¢) C U, contradicting |sn — §| < e for all indices
nlarger than a fixed one N. If instead U is closed and x ¢ U, then
suppose for every i there is x; € (x — 1/i,x+ 1/i),x € U. Then the
sequence (xn) clearly converges to x ¢ U, a contradiction, since
the x; lie in U. Hence there must be an i with (x —1/i;x+ 1/u) c C
and C is open.
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Since the complement of a union of sets is the infersection of
their complements, we get

Theorem 3.2.14, p. 92

Any infersection of closed sets is closed. Any finite union U, C;
of closets C; is closed.

In particular, given any subset S of R, the intersection of all
closed subsets of R containing S is the unique smallest closet of R
containing S, called its closure and denoted S. See Definition
3.2.11onp. 91.
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Thus, as a well-known saying goes, “sets are not like doors”: most
subsets of R are neither open nor closed. One property of doors
does however (almost) carry over to sefs.

Theorem; cf. Theorem 3.4.6, p. 104

The only subsets of R that are both open and closed are the
empty set ) and R itself.
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Proof.

Suppose for a contradiction that A is a nonempty proper open
and closed subset of R with complement B. Then there is an
interval I = [a, b] such that both A and B have nonempty
intersection with /. For definiteness assume b € B. Since B is open
there is e > O with (b — ¢, b + €) C B, so that the supremum c¢ of
AN lis strictly less than b; similarly it is strictly greater than a. Then
there is a sequence (x,) of points in A with x, € (¢ — 1/n, c] and
likewise a sequence (yn) of points in Bwith y; € [c,c + 1/n). The
seqguences (Xn), (Yn) then both converge to ¢, forcing c € An B,
a contradiction. Note that if we define a subset of an interval |
(open, half-open, or closed) to be open (or closed) in [ if it is the
intersection of an open (or closed) subset of R and /, then the
same argument shows that the only open and closed subsets of
| are the empty set and / itself. O
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Example

Next | consider a very inferesting example of a closed subset of
R very different from a closed interval. This is the Cantor set C,
discussed pn pp. 85-88 in the text. It is easiest to define C as
consisting of all points Y-, a;3~/, where coefficient g; is 0 or 2.
Note that two such expansions S~ a;3~/, 3" b;3~' are equal if and
only if a; = b; for all i. Given asum x = >, age'in C, let

f(x) = 7% bi2~!, where b; = g;/2 =0ifg;=0and b; = 1if g; = 2.
This map is surjective (but not injective), whence C is
uncountable (since the range of f is the entire interval [0, 1],
which is uncountable).
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This last observation suggests that C is large; but on the other
hand another way of describing C makes it seem small. Start
with the closed interval C; = [0, 1] and remove the open middle
third (1/3,2/3), obtaining the union C, of the two disjoint closed
infervals I; = [0, 1/3] and h = [2/3, 1]. of total length 2/3. Then
remove the open middle third of each /;, obtaining thereby a
disjoint union Cj of four closed intervals of total length 4/9.
Inductively, if C; has been defined and is the union of 2/ disjoint
closed intervals [a;, bj] each of length 3/, so that the total length
of C;is (2/3)', then remove the open middle third (242, 2+20)
from this interval, thereby producing a union Cj, ; of 2! disjoint
closed intervals of total length (2/3)"+1,
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Then the Cantor set C can alternatively be realized as the
intersection of all the C;. Since each C; is closed, so is C. Since
the length of C; (that is, the total length of the closed intervals
making up C) is (2/3) and (2/3)' — 0 as i — oo, one can argue
that the length of Cis 0, so that C is small. The two contradictory
indications given above of the size of C are what makes this set
inferesting.
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A subset S of R that is not the disjoint union of its nonempty
intersections SN U, SN C with and open set U and closed set C is
called connected; see Definition 3.4.4 on p. 104. The argument
above shows that any interval in R (open, half-open, or closed,
and bounded or unbounded on either end) is connected. On
the other hand, no other subset S of R is connected, for if a
subset S contains points a, b but not ¢, with a < ¢ < b, then it is
the disjoint union of its intersections with (—oo, ¢) and (¢, o0),
which are the same as its respective intersections with (oo, c] and
[c, >0), so that each of these infersections is nonempty, open,
and closed in S.
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There is another very important kind of subset of R, called
compact., A compact subset of R is one that is both closed and
bounded; equivalently, one such that every sequence of points
in it has a convergent subsequence whose limit also lies in it (see
Definition 3.3.1 on p. 96). Thus a closed interval [a, b] is compact
but an open interval (a, b) (with a < b) is not. Compact and
connected subsets of R play a very important role in two
theorems you will see later in the course, called the Infermediate
Value Theorem and Extreme Value Theorem. | will discuss these
theorems when | start covering confinuous functions affter the
midterm.
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