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Following part of Chapter 3 of the text, I present some basic
definitions arising in something called the topology of the real
line.
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Recall that in the lecture on April 11 I defined a subset S of R to
be closed if it contains the limit of any convergent series of its
points. I warned you at that time that while there is also a notion
of open set, an open set is not just one that is not closed! Now
the time has come to define this notion.

Definition 3.2.1, p. 88
A subset S of R is called open if whenever x ∈ S there is ε > 0
(depending on x) such that the open interval
(x − ε, x + ε) = {y ∈ R : x − ε < y < x + ε} is a subset of S. By
convention, the empty set is also considered open.

In particular, an open interval (a,b) (or a,∞)) is an open subset
of R, just as a closed interval [a,b] = {x ∈ R : a ≤ x ≤ b} (or
[a,∞)) is a closed subset. A half-open interval
[a,b) = {x ∈ R : a ≤ x < b} is neither closed nor open.
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The most fundamental property of open sets is then

Theorem 3.2.3, p. 89
Any union of open sets is open. Any finite intersection ∩m

i=1Ui of
open sets U1, . . . ,Um is open.

The assertion about unions is clear; the one about intersections
follows since if x ∈ Ui for all i, so that there are ε1, . . . , εm with
9x − εi , x + εi) ⊂ Ui , then we have (x − ε, x + ε) ⊂ ∩m

i=1Ui , where ε is
the minimum of ε1, . . . , εm.
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The relationship between open and closed sets is given by

Theorem 3.2.13, p. 92
A set U ∈ R is open if and only if its complement C (consisting of
all x ∈ R not in U) is closed.

Indeed, if U is open and (sn) is a convergent sequence of points
not in U with limit s, then we cannot have s ∈ U, lest there be an
ε > 0 with (s − ε, s + ε) ⊂ U, contradicting |sn − s| < ε for all indices
n larger than a fixed one N. If instead U is closed and x /∈ U, then
suppose for every i there is xi ∈ (x − 1/i, x + 1/i), x ∈ U. Then the
sequence (xn) clearly converges to x /∈ U, a contradiction, since
the xi lie in U. Hence there must be an i with (x − 1/i, x + 1/u) ⊂ C
and C is open.
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Since the complement of a union of sets is the intersection of
their complements, we get

Theorem 3.2.14, p. 92
Any intersection of closed sets is closed. Any finite union ∪m

i=1Ci
of closets Ci is closed.

In particular, given any subset S of R, the intersection of all
closed subsets of R containing S is the unique smallest closet of R
containing S, called its closure and denoted S. See Definition
3.2.11 on p. 91.
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Thus, as a well-known saying goes, “sets are not like doors”: most
subsets of R are neither open nor closed. One property of doors
does however (almost) carry over to sets.

Theorem; cf. Theorem 3.4.6, p. 104
The only subsets of R that are both open and closed are the
empty set ∅ and R itself.
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Proof.
Suppose for a contradiction that A is a nonempty proper open
and closed subset of R with complement B. Then there is an
interval I = [a,b] such that both A and B have nonempty
intersection with I. For definiteness assume b ∈ B. Since B is open
there is ε > 0 with (b − ε,b + ε) ⊂ B, so that the supremum c of
A ∩ I is strictly less than b; similarly it is strictly greater than a. Then
there is a sequence (xn) of points in A with xn ∈ (c − 1/n,c] and
likewise a sequence (yn) of points in B with yi ∈ [c,c + 1/n). The
sequences (xn), (yn) then both converge to c, forcing c ∈ A ∩ B,
a contradiction. Note that if we define a subset of an interval I
(open, half-open, or closed) to be open (or closed) in I if it is the
intersection of an open (or closed) subset of R and I, then the
same argument shows that the only open and closed subsets of
I are the empty set and I itself.

Lecture 4-21: Basic topology of the real numbers April 21, 2025 8 / 1



Example
Next I consider a very interesting example of a closed subset of
R very different from a closed interval. This is the Cantor set C,
discussed pn pp. 85-88 in the text. It is easiest to define C as
consisting of all points

∑∞
i=0 ai3−i , where coefficient ai is 0 or 2.

Note that two such expansions
∑

ai3−i ,
∑

bi3−i are equal if and
only if ai = bi for all i. Given a sum x =

∑∞
i=0 aie−i in C, let

f (x) =
∑∞

i=0 bi2−i , where bi = ai/2 = 0 if ai = 0 and bi = 1 if ai = 2.
This map is surjective (but not injective), whence C is
uncountable (since the range of f is the entire interval [0, 1],
which is uncountable).
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This last observation suggests that C is large; but on the other
hand another way of describing C makes it seem small. Start
with the closed interval C1 = [0, 1] and remove the open middle
third (1/3, 2/3), obtaining the union C2 of the two disjoint closed
intervals I1 = [0, 1/3] and I2 = [2/3, 1], of total length 2/3. Then
remove the open middle third of each Ii , obtaining thereby a
disjoint union C3 of four closed intervals of total length 4/9.
Inductively, if Ci has been defined and is the union of 2i disjoint
closed intervals [ai ,bi ] each of length 3−i , so that the total length
of Ci is (2/3)i , then remove the open middle third (2a+b

3 , a+2b
3 )

from this interval, thereby producing a union Ci+1 of 2i+1 disjoint
closed intervals of total length (2/3)i+1.
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Then the Cantor set C can alternatively be realized as the
intersection of all the Ci . Since each Ci is closed, so is C. Since
the length of Ci (that is, the total length of the closed intervals
making up Ci) is (2/3)i and (2/3)i → 0 as i →∞, one can argue
that the length of C is 0, so that C is small. The two contradictory
indications given above of the size of C are what makes this set
interesting.
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A subset S of R that is not the disjoint union of its nonempty
intersections S ∩ U, S ∩C with and open set U and closed set C is
called connected; see Definition 3.4.4 on p. 104. The argument
above shows that any interval in R (open, half-open, or closed,
and bounded or unbounded on either end) is connected. On
the other hand, no other subset S of R is connected, for if a
subset S contains points a,b but not c, with a < c < b, then it is
the disjoint union of its intersections with (−∞,c) and (c,∞),
which are the same as its respective intersections with (∞,c] and
[c,∞), so that each of these intersections is nonempty, open,
and closed in S.

Lecture 4-21: Basic topology of the real numbers April 21, 2025 12 / 1



There is another very important kind of subset of R, called
compact. A compact subset of R is one that is both closed and
bounded; equivalently, one such that every sequence of points
in it has a convergent subsequence whose limit also lies in it (see
Definition 3.3.1 on p. 96). Thus a closed interval [a,b] is compact
but an open interval (a,b) (with a < b) is not. Compact and
connected subsets of R play a very important role in two
theorems you will see later in the course, called the Intermediate
Value Theorem and Extreme Value Theorem. I will discuss these
theorems when I start covering continuous functions after the
midterm.
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