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After digressing briefly to give a remarkable example of a series
which converges by Dirichlet’s Test, I give a precise account of
rearrangements of series, showing that they do not affect the
sums of absolutely convergent series but can drastically alter the
sums of conditionally convergent ones.
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First a rather strange-looking digression. By standard trig identities
cos 2i+1

2 x = cos(i + 1
2)x = cos ix cos x

2 − sin ix sin x
2 , cos(i −

1
2)x =

cos ix cos x
2 + sin ix sin x

2 , whence
cos(i − 1

2)x − cos(i + 1
2)x = 2 sin ix sin 1

2x . Adding for 1 ≤ i ≤ n, we

get
∑n

i=1 sin ix =
cos x

2−cos (2n+1)x
2

2 sin x
2

for any x that is not a multiple of 2π.
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It follows that for any fixed x that is not a multiple of 2π, the
partial sums of the series

∑∞
i=1 sin ix are bounded; the same is

true trivially if x is a multiple of 2π, since then all terms of the
series are 0. By Dirichlet’s test, any series

∑∞
i=1 sin ixyi with

y1 ≥ y2 ≥ . . . , yi → 0, converges; in particular,
∑∞

i=1
sin ix

i
converges. Such a series is (a special case of) a Fourier series;
such series play a prominent role in physics, engineering, and
mathematics. Although series

∑∞
i=1 sin ixyi as above converge,

they typically do so conditionally and thus very slowly, so that it is
difficult even to estimate their sums with a computer.
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I now formally define rearrangements of series.
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Definition 2.7.9, p. 75
A series

∑∞
k=1 bk is a rearrangement of a series

∑∞
k=1 ak if there is

a bijection f from N to itself such that bk = af (k) for all k .

Then we have

Theorem 2.7.10, p. 75
Any rearrangement of an absolutely convergent series

∑∞
k=1 ak

converges to the same sum.
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Proof.
Suppose

∑
ak converges absolutely and

∑
ak = A. Given ϵ > 0

there is then an index N such that
∑∞

n=N |an| converges to a
number less than ϵ/2. Given ϵ and a rearrangement

∑∞
k=1 bk of∑∞

k=1 ak choose M large enough that all terms a1, . . . ,aN appear
among b1, . . . ,bM . Then any partial sum

∑n
k=1 bk for n > M differs

from sN = a1 + . . .aN by some terms ai with i > N, the sum of the
absolute values of these terms being less than ϵ/2; in turn sN
differs from A by less than ϵ/2. Thus the partial sums of

∑
bk

converge to A as well.
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Example
On the other hand, consider the alternating harmonic series∑∞

k=1(−1)k−1/k , or more generally any series S that can be
written as the difference

∑
pk −

∑
qk of subseries with

nonnegative terms such that p1 ≥ p2 ≥ . . . ,pi → 0 and similarly
for the qi . Suppose further that both series

∑
pk ,

∑
qk diverge.

Then I claim that there is a rearrangement of S converging to
any desired real number, say 1000. Indeed, start with the terms
pk . Since

∑
pk diverges, there is a least index N with∑N

k=1 pk > 1000. Then
∑N

k=1 pk lies between
∑N−1

k=1 , which is less
than 1000, and 1000 + pN . Henceforth all partial sums larger than
1000 will be less than 1000 + pN . Next, since

∑
qk diverges, there

is a least M such that SM =
∑N

k=1 pk −
∑M

k=1 qk < 1000, and then
SM > 1000 − qM . Next, the sum

∑∞
k=N+1 pk still diverges, so there is

a least N1 > N with SN1
= SM +

∑N1
k=N+1 pk > 1000; we have

SN1
< 1000 + pN1

. Henceforth all partial sums less than 1000 will
be larger than 1000 − pM .
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Example
Continuing in this way and using that pn,qn → 0 as n → ∞, we
get a rearrangement of S that converges to 1000. Given any
real numbers A,B with A > B, we can also rearrange S so that
the limit superior of the partial sums of the rearranged series is A
while the limit inferior of these partial sums is B.

The moral of this example is that absolutely convergent series
are much better behaved than conditionally convergent ones
and one has much more freedom to manipulate them
algebraically. In particular, given a double infinite summation∑∞

i=1
∑∞

j=1 aij , we can group the terms in various ways to rewrite
this double series as a single one. For example, if

∑∞
i=1 aij

converges for each fixed j, say to sj , and if
∑

j sj converges, then
we can define

∑∞
i=1

∑∞
j=1 aij to be

∑∞
j=1 sj . Similarly, if instead∑∞

j=1 aij converges for each fixed i, say to ti , and if
∑

i ti
converges, then we can define

∑∞
i=1

∑∞
j=1 aij to be

∑∞
i=1 ti .

Lecture 4-18: Rearrangements of series and double summationsApril 18, 2025 9 / 13



In general, however, if both of these definitions apply to∑∞
i=1

∑∞
j=1 aij , there is no reason to expect them to give the same

value. There is an example at the beginning of Chapter 2 in the
text . It turns out that an especially convenient way to group the
terms is by diagonals, so that given the double sum above, we
set cn =

∑n
i=1 aibn−i and define

∑∞
i=1

∑∞
j=1 aij to be

∑∞
n=2 cn if this

sum converges. In particular, given two infinite series∑∞
i=1 ai ,

∑∞
j=1 bj , we define their Cauchy product to be

∑∞
k=2 ck ,

with the ck defined as above (see pp. 82,84). The motivation for
making this definition comes from power series; that is, (families
of) series

∑∞
k=0 akxk , one for every x ∈ R. Collecting coefficients

of each fixed power of x , we see that the product∑∞
i=0 aix i ∑∞

j=0 bjx j is
∑∞

k=0 ckxk , where ck =
∑k

i=0 aibk−i .
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In general, provided that a series S =
∑∞

i=1
∑∞

j=1 aij converges
absolutely in the sense that

∑∞
k=2 dk converges, where

dk =
∑k

i=1 |aibk−i |, then any arrangement of the terms of S
converges and any two arrangements of these terms converge
to the same value. Moreover one has

Merten’s Theorem
Suppose that

∑∞
n=0 an converges absolutely with sum A and∑∞

n=0 bn converges, not necessarily absolutely, to B. Then∑∞
n=0 cn = AB, where cn =

∑n
k=0 akbn−k .
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Proof.
First suppose that B = 0. I must show that Cn → 0 as n → ∞,
where Cn =

∑n
k=0 ck . Let Bn =

∑n
k=0 bk , α =

∑∞
k=0 |ak | < ∞. I then

have Cn = a0Bn + a1Bn−1 + · · ·+ anB0 for all n and Bn → 0 as
n → ∞, whence given ϵ > 0 there is N such that
|Cn| ≤ |anB0 + · · ·+ an−NBN |+ ϵα for n > N. The |Bi | are bounded
above, say by M; then this last sum is bounded by M(N + 1)ϵ+ ϵα
if n is large enough. Hence Cn → 0 as n → ∞, as desired. In
general, set b′

0 = b0 − B,b′
n = bn for n > 0 and apply the previous

argument to the ai and b′
i .
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In general we do not have C = AB if we merely assume that∑
an and

∑
bn converge respectively to A and B; for example, if

ak = bk = (−1)k
√

k
, then

∑
ak ,

∑
bk both converge by the

Alternating Series Test, but |c2n| ≥ n+1
2n , so

∑
cn does not

converge.
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