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Having covered sequences in a fair amount of detail in previous
lectures the time has come to study the most important
examples, namely infinite series, more deeply. I presented the
Alternating Series Test for convergence of a series with positive
and negative terms last time; today I will begin with series with
nonnegative terms, but then look at arbitrary series.
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I begin by first noting that if the series
∑∞

n=1 an,
∑∞

n=1 bn converge
to S and T , respectively, then

∑∞
n=1(an + bn) and

∑∞
n=1(an − bn)

converge to S + T and S − T , respectively. This follows at once
from the definition of infinite series and the limit laws for addition
and subtraction. Similarly,

∑∞
n=1 can converges to cS. Next

observe that if
∑∞

i=1 ai converges, then an → 0 as n → ∞. This
follows since we have an = sn − sn−1, where sn =

∑n
i=1 ai is the nth

partial sum, so that if sn converges to S, then so does sn−1 and
the difference sn − sn−1 converges to 0. The harmonic series∑∞

i=1 1/i shows that the converse of this last result is false: we
have 1/n → 0, but

∑∞
i=1 1/i diverges.
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You have seen that an infinite series
∑∞

i=1 ai with ai ≥ 0 for all i (or
even for all i larger than some index N) converges if and only if its
partial sums are bounded. The simplest way to verify this last
condition is to compare the partial sums to those of a known
series.

Comparison Test: Theorem 2.7.4, p. 73
If
∑∞

k=1 ak ,
∑∞

k=1 bk are two series with 0 ≤ ak ≤ bk for all k , then if∑∞
k=1 bk converges, so does

∑∞
k=1 ak ; likewise, if

∑∞
k=1 ak

diverges, so does
∑∞

k=1 bk .
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Proof.
This follows since any partial sum sn =

∑n
k=1 ak of the ak is at most

the corresponding partial sum tn =
∑n

k=1 bk of the bk , so that if
the tn are bounded, so are the sn, and if conversely the sn are
unbounded, then so too are the tn.

The applicability of this result is vastly extended by the following
one.

Limit Comparison Test
Suppose that

∑
ak ,

∑
bk are two series with ak ,bk ≥ 0 for all k .

Assume that L = limk→∞(ak/bk) exists and is finite and nonzero.
Then

∑
ak converges if and only if

∑
bk does.
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Proof.
Choosing ϵ = L/2, we find that there is an index N such that
L
2bn ≤ an ≤ 3L

2 bn for n > N, whence a typical partial sum
sn =

∑n
k=N ak is bounded between L

2
∑n

k=N bk and3L
2
∑N

k=n bk , for
any n > N. Thus

∑∞
k=N bk converges if an only if

∑∞
k=N ak does, or

if and only if
∑

bk converges, or if and only if
∑

ak does, as
desired.

Thus for example we know that S =
∑∞

k=1
3k−7

k2−2k+4 diverges by limit

comparison with the harmonic series
∑∞

k=1
1
k , since

limk→∞

3k−7
k2−2k+4

1
k

= 3 is finite. Here I am using the facts that ckm → 0

as k → ∞ for any constant c and strictly negative integer m.
Note that while not all terms of the series S are nonnegative, all
but finitely many are; this is enough to apply the test.
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Probably the single most frequently applied convergence test is
the following one.

Ratio Test: Exercise 2.7.9, p. 78
Given a series

∑∞
k=1 with ak ≥ 0 for all but finitely many k ,

suppose that L = limk→∞
ak+1
ak

exists. Then
∑

ak converges if L < 1
and diverges if L > 1. No information can be deduced if L = 1.
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Proof.
If L < 1, then choose M with L < M < 1. We then have
an+1 ≤ Man for n > N, say, whence by induction
0 ≤ an ≤ Mn−NaN for n > N. Then

∑∞
n=N an converges by

comparison with the geometric series
∑∞

n=N aNMn−N , whence so
too does the full series

∑∞
k=1 ak . If L > 1, then choose M with

L > M > 1. We have an+1 ≥ Man for n > N for some N, whence
by induction an ≥ aN > 0 for all n ≥ N, implying that an ̸→ 0 as
n → ∞. Then

∑
an cannot converge. To illustrate the last

assertion, consider the two series
∑∞

k=1
1
k and

∑∞
k=1

1
k2 . These are

p-series with p = 1 in the first case and p = 2 in the second; the
first diverges but the second converges.

Lecture 4-16: Convergence tests for infinite series April 16, 2025 8 / 1



Henceforth I will be deliberately vague about the initial values of
my indices of summation. The results apply for any initial values.
To apply convergence tests to series

∑
ak for which not all terms

are nonnegative, we make the following definition.

Definition 2.7.8, p. 74
A series

∑
ak converges absolutely if

∑
|ak | converges. if

∑
ak

converges but not absolutely, then it is said to converge
conditionally.

Then we have

Theorem 2.7.6, p 73
If
∑

ak converges absolutely, then
∑

ak converges.
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Indeed, if
∑

ak converges absolutely and bk = ak + |ak |, then
0 ≤ bk ≤ 2|ak | for all k , whence

∑
bk converges by comparison

with
∑

2|ak |; but then so does
∑

ak , since ak = bk − |ak | for all k .

I turn now to series of the form
∑

xkyk ; note that any alternating
series takes this form, with xk = (−1)k . I will start with a simple
formula, analogous to integration by parts, but applied to finite
sums rather than integrals.

Summation by parts: Exercise, 2.7.12, p. 78
Let (xn) and (yn) be sequences and set sm = x1 + . . .+ xm for
m ≤ n, s0 = 0. Then∑n

j=m xjyj = snyn+1 − sm−1ym +
∑n

j=m sj(yj − yj+1).
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This follows at once by setting xj = sj − sj−1 and collecting
coefficients of each sj . The beautiful consequence for series is
then

Dirichlet’s Test: Exercise 2.7.14, p. 79
Suppose that the partial sums of the series S =

∑
xk are

bounded, while the series
∑

yk satisfies y1 ≥ y2 ≥ . . . , yk → 0 as
k → ∞. Then S converges.
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Proof.
I will show that the partial sums tn of S form a Cauchy sequence.
For m < n the difference tn − tm is

∑n
k=m+1 xkyk , which equals

snyn+1 − smym+1 +
∑n

j=m+1 sj(yj − yj+1) by summation by parts,
where sn is the nth partial sum of the xk . By hypothesis there is
B ∈ R with all si appearing on the right side satisfying |si | < B.
Since the sum

∑∞
j=m+1(yj − yj+1) telescopes and is equal to ym+1

and yn → 0 as n → ∞, given ϵ > 0, there is an index N with
yn < ϵ

3B for n > N, whence |tn − tm| < ϵ for n,m > N. Hence the
sequence (tn) is Cauchy and must converge.
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As a very special case we recover the Alternating Series Test,
since given a series

∑∞
k=1(−1)k−1yk satisfying the hypotheses of

that test, the partial sums of
∑∞

k=1(−1)k−1 are indeed bounded
while y1 ≥ y2 ≥ . . . and yi → 0 as i → ∞. But the Dirichlet test is
much more general, allowing for very different patterns of signs
than the alternating one. I will give a striking example next time.
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