Lecture 4-16: Convergence tests for infinite series

April 16, 2025

Lecture 4-16: Convergence tests for infinite

Image: A matrix

Having covered sequences in a fair amount of detail in previous lectures the time has come to study the most important examples, namely infinite series, more deeply. I presented the Alternating Series Test for convergence of a series with positive and negative terms last time; today I will begin with series with nonnegative terms, but then look at arbitrary series.

I begin by first noting that if the series $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ converge to S and T, respectively, then $\sum_{n=1}^{\infty} (a_n + b_n)$ and $\sum_{n=1}^{\infty} (a_n - b_n)$ converge to S + T and S - T, respectively. This follows at once from the definition of infinite series and the limit laws for addition and subtraction. Similarly, $\sum_{n=1}^{\infty} ca_n$ converges to cS. Next observe that if $\sum_{i=1}^{\infty} a_i$ converges, then $a_n \to 0$ as $n \to \infty$. This follows since we have $a_n = s_n - s_{n-1}$, where $s_n = \sum_{i=1}^n a_i$ is the *n*th partial sum, so that if s_n converges to S, then so does s_{n-1} and the difference $s_n - s_{n-1}$ converges to 0. The harmonic series $\sum_{i=1}^{\infty} 1/i$ shows that the converse of this last result is false: we have $1/n \rightarrow 0$, but $\sum_{i=1}^{\infty} 1/i$ diverges.

・ロト ・同ト ・ヨト ・ヨト … ヨ

You have seen that an infinite series $\sum_{i=1}^{\infty} a_i$ with $a_i \ge 0$ for all *i* (or even for all *i* larger than some index *N*) converges if and only if its partial sums are bounded. The simplest way to verify this last condition is to compare the partial sums to those of a known series.

Comparison Test: Theorem 2.7.4, p. 73

If $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ are two series with $0 \le a_k \le b_k$ for all k, then if $\sum_{k=1}^{\infty} b_k$ converges, so does $\sum_{k=1}^{\infty} a_k$; likewise, if $\sum_{k=1}^{\infty} a_k$ diverges, so does $\sum_{k=1}^{\infty} b_k$.

ヘロン 人間 とくほ とくほ とう

This follows since any partial sum $s_n = \sum_{k=1}^n a_k$ of the a_k is at most the corresponding partial sum $t_n = \sum_{k=1}^n b_k$ of the b_k , so that if the t_n are bounded, so are the s_n , and if conversely the s_n are unbounded, then so too are the t_n .

The applicability of this result is vastly extended by the following one.

Limit Comparison Test

Suppose that $\sum a_k$, $\sum b_k$ are two series with a_k , $b_k \ge 0$ for all k. Assume that $L = \lim_{k\to\infty} (a_k/b_k)$ exists and is finite and nonzero. Then $\sum a_k$ converges if and only if $\sum b_k$ does.

Choosing $\epsilon = L/2$, we find that there is an index N such that $\frac{l}{2}b_n \le a_n \le \frac{3L}{2}b_n$ for n > N, whence a typical partial sum $s_n = \sum_{k=N}^n a_k$ is bounded between $\frac{L}{2} \sum_{k=N}^n b_k$ and $\frac{3L}{2} \sum_{k=n}^N b_k$, for any n > N. Thus $\sum_{k=N}^{\infty} b_k$ converges if an only if $\sum_{k=N}^{\infty} a_k$ does, or if and only if $\sum b_k$ converges, or if and only if $\sum a_k$ does, as desired.

Thus for example we know that $S = \sum_{k=1}^{\infty} \frac{3k-7}{k^2-2k+4}$ diverges by limit comparison with the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$, since $\lim_{k\to\infty} \frac{\frac{3k-7}{k^2-2k+4}}{\frac{1}{k}} = 3$ is finite. Here I am using the facts that $ck^m \to 0$ as $k \to \infty$ for any constant c and strictly negative integer m. Note that while not all terms of the series S are nonnegative, all but finitely many are; this is enough to apply the test.

イロン イロン イヨン イヨン 三日

Probably the single most frequently applied convergence test is the following one.

Ratio Test: Exercise 2.7.9, p. 78

Given a series $\sum_{k=1}^{\infty}$ with $a_k \ge 0$ for all but finitely many k, suppose that $L = \lim_{k\to\infty} \frac{a_{k+1}}{a_k}$ exists. Then $\sum a_k$ converges if L < 1 and diverges if L > 1. No information can be deduced if L = 1.

イロン イ理 とくほ とくほ とう

If L < 1, then choose M with L < M < 1. We then have $a_{n+1} \leq Ma_n$ for n > N, say, whence by induction $0 \le a_n \le M^{n-N}a_N$ for n > N. Then $\sum_{n=N}^{\infty} a_n$ converges by comparison with the geometric series $\sum_{n=N}^{\infty} a_N M^{n-N}$, whence so too does the full series $\sum_{k=1}^{\infty} a_k$. If L > 1, then choose M with L > M > 1. We have $a_{n+1} \ge Ma_n$ for n > N for some N, whence by induction $a_n \ge a_N > 0$ for all $n \ge N$, implying that $a_n \ne 0$ as $n \to \infty$. Then $\sum a_n$ cannot converge. To illustrate the last assertion, consider the two series $\sum_{k=1}^{\infty} \frac{1}{k}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2}$. These are p-series with p = 1 in the first case and p = 2 in the second; the first diverges but the second converges.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Henceforth I will be deliberately vague about the initial values of my indices of summation. The results apply for any initial values. To apply convergence tests to series $\sum a_k$ for which not all terms are nonnegative, we make the following definition.

Definition 2.7.8, p. 74

A series $\sum a_k$ converges absolutely if $\sum |a_k|$ converges. if $\sum a_k$ converges but not absolutely, then it is said to converge conditionally.

Then we have

Theorem 2.7.6, p 73

If $\sum a_k$ converges absolutely, then $\sum a_k$ converges.

ヘロン 人間 とくほ とくほ とう

Indeed, if $\sum a_k$ converges absolutely and $b_k = a_k + |a_k|$, then $0 \le b_k \le 2|a_k|$ for all k, whence $\sum b_k$ converges by comparison with $\sum 2|a_k|$; but then so does $\sum a_k$, since $a_k = b_k - |a_k|$ for all k.

I turn now to series of the form $\sum x_k y_k$; note that any alternating series takes this form, with $x_k = (-1)^k$. I will start with a simple formula, analogous to integration by parts, but applied to finite sums rather than integrals.

Summation by parts: Exercise, 2.7.12, p. 78

Let (x_n) and (y_n) be sequences and set $s_m = x_1 + \ldots + x_m$ for $m \le n, s_0 = 0$. Then $\sum_{j=m}^n x_j y_j = s_n y_{n+1} - s_{m-1} y_m + \sum_{j=m}^n s_j (y_j - y_{j+1}).$

ヘロン 人間 とくほ とくほ とう

This follows at once by setting $x_j = s_j - s_{j-1}$ and collecting coefficients of each s_j . The beautiful consequence for series is then

Dirichlet's Test: Exercise 2.7.14, p. 79

Suppose that the partial sums of the series $S = \sum x_k$ are bounded, while the series $\sum y_k$ satisfies $y_1 \ge y_2 \ge \dots, y_k \to 0$ as $k \to \infty$. Then S converges.

ヘロン 人間 とくほ とくほ とう

I will show that the partial sums t_n of S form a Cauchy sequence. For m < n the difference $t_n - t_m$ is $\sum_{k=m+1}^n x_k y_k$, which equals $s_n y_{n+1} - s_m y_{m+1} + \sum_{j=m+1}^n s_j (y_j - y_{j+1})$ by summation by parts, where s_n is the *n*th partial sum of the x_k . By hypothesis there is $B \in \mathbb{R}$ with all s_i appearing on the right side satisfying $|s_i| < B$. Since the sum $\sum_{j=m+1}^{\infty} (y_j - y_{j+1})$ telescopes and is equal to y_{m+1} and $y_n \to 0$ as $n \to \infty$, given $\epsilon > 0$, there is an index N with $y_n < \frac{\epsilon}{3B}$ for n > N, whence $|t_n - t_m| < \epsilon$ for n, m > N. Hence the sequence (t_n) is Cauchy and must converge.

ヘロン 人間 とくほ とくほ とう

As a very special case we recover the Alternating Series Test, since given a series $\sum_{k=1}^{\infty} (-1)^{k-1} y_k$ satisfying the hypotheses of that test, the partial sums of $\sum_{k=1}^{\infty} (-1)^{k-1}$ are indeed bounded while $y_1 \ge y_2 \ge \ldots$ and $y_i \to 0$ as $i \to \infty$. But the Dirichlet test is much more general, allowing for very different patterns of signs than the alternating one. I will give a striking example next time.