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On Monday I ended the lecture with the fundamental
Monotone Convergence Theorem, which asserts that any
bounded increasing sequence converges. Actually a more
general result holds. Call a sequence sn monotone if it is either
increasing (sn ≤ sn+1 for all n) or decreasing (sn ≥ sn+1 for all n)
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Theorem 2.4.2, p. 56, revisited
A monotone sequence (sn) converges if and only if it is bounded.

I first show that every convergent sequence (sn), monotone or
not, is bounded (Theorem 2.3.2, p. 49). Indeed, if sn converges to
L, then there is an index N with ||sn − L| < 1 for n ≥ N, whence
also sn) < |L|+ 1 for all such n. Letting M be the largest of
|s1|, . . . , |sn−1|, we then get |sn| < max(M, |L|+ 1) for all n, as
desired. It only remains to show that if (sn) is decreasing and
bounded below, then (sn) converges; this follows from the same
argument as in the increasing case, replacing the least upper
bound of the set S of terms of (sn) by the greatest lower bound.
Note that the same argument works if instead we have only
sn ≤ sn+1 for all indices n larger than some N, or sn ≥ sn+1 for all n
larger than N.
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Since the sequences of greatest interest are those of partial
sums of an infinite series, I now turn attention to such series. I first
consider series

∑∞
i=1 ai where ai ≥ 0 for all i; the results extend to

the case where ai ≥ 0 for all i larger than some N.
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Proposition
A series

∑∞
n=1 an as above converges if and only if its partial sums

are bounded.

Proof.
The partial sums sn form an increasing sequence, which
therefore converges if and only if it is bounded. Note that if the
sn are not bounded, then we must have sn →∞ as n→∞.

Lecture 4-11: Monotone sequences and decreasing series April 11, 2025 5 / 1



There is a very useful criterion for deciding when a series
∑

ai
with nonnegative terms has bounded partial sums.

Cauchy condensation test (Theorem 2.4.6, p. 59)
A series

∑∞
n=1 bn with bn ≥ 0 for all n converges if and only if the

series
∑∞

n=0 2nb2n converges.
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Proof.
If the second series converges, then a partial sum s2k+1−1 of the
first series equals
b1 + (b2 + b3) + (b4 + b5 + b6 + b7) + . . . ≤ b1 + 2b2 + . . . 2kb2k ; this
last term is the kth partial sum t2k of the second series. Since the
full set of partial sums tn is bounded, the tk are also bounded.
Since any partial sum sm of the first series is at most s2k−1
whenever m < 2k − 1, the first series has bounded partial sums
and converges. If the second series diverges, then we similarly
see that
(b1+b2)+(b3+b4)+(b5+b6+b7+b8)+. . . ≥ 2b2+2b4+. . .+2k−1b2k .
The partial sums of the bm are not bounded, whence as above
the partial sums b2k are not bounded, and the partial sums of the
first series are not bounded, so that the first series diverges.

Lecture 4-11: Monotone sequences and decreasing series April 11, 2025 7 / 1



Example
The p-series Hp =

∑∞
i=1(1/i

p) converges if and only if p > 1.
Indeed, the condensed series

∑∞
n=0 2n/2np =

∑∞
n=0(2

1−p)n is
geometric and so converges if and only if 21−p < 1 or p > 1. In
particular, the harmonic series

∑∞
n=1 1/n diverges. By the way,

the value of Hp is known for all positive even integers p, but not
for any odd p > 1!

Series
∑∞

n=1 with bn ≥ bn+1 for all n are often analyzed using
something called the integral test, which some of you may have
seen. The Cauchy condensation test provides an alternative
way to look at such series (since we will not get to integration
until much later in the course).

Lecture 4-11: Monotone sequences and decreasing series April 11, 2025 8 / 1



For general (non-monotone) sequences boundedness does not
imply convergence; e.g. the sequence sn = (−1)n is bounded
but fails to converge. There is however a very useful way to
extract a convergent sequence out of any bounded sequence,
whether or not that sequence itself converges. To do this I need
a definition.

Definition 2.5.1, p. 62
Given a sequence an I say that another sequence bk is a
subsequence of an if there is a strictly increasing sequence
n1,n2, . . . of positive integers such that bk = ank . The parameter k
indexes the subsequence.
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It is easy to see that subsequences of convergent sequences
converge to the same limit:

Theorem 2.5.2, p. 63
If (an) converges to L, then any subsequence (bk = ank ) also
converges to L.

Indeed, if an → L then for any ε > 0 there is N with |an − L| < ε
whenever n > N. Since the indices nk form a strictly increasing
sequence of positive integers, we have nk ≥ k for any k , whence
|bk − L| < ε for any k ≥ N, as desired. Next I show that any
sequence, convergent or not, always has a monotone
subsequence.

Theorem
Every sequence an has a monotone subsequence.

Lecture 4-11: Monotone sequences and decreasing seriesApril 11, 2025 10 / 1



Proof.
Call an index n a peak index if am ≤ an for all m ≥ n. Then I
consider two cases. If there are infinitely many peak indices, say
n1,n2, . . . with n1 < n2 < . . ., then the definition of peak shows
that the subsequence bk = ank is decreasing. If instead there are
only finitely many peak indices, then there must be a largest one
N (or set N = 0 if there are no peak indices at all). Set n1 = N + 1;
if n1, . . . ,nk have been defined so that an1 < · · · < ank , then since
nk > N there must be an index m > nk with am > ank ; set
nk+1 = m. In this inductive way we have defined indices nk for all
k such that bk = ank is an increasing subsequence of an.

As an immediate corollary every bounded sequence has a
convergent subsequence (the Bolzano-Weierstrass Theorem,
2.5.5 on p. 64) since a monotone subsequence of a bounded
sequence is again bounded and so must converge.
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I conclude by using sequences to define a certain kind of subset
of R.

Definition 3.2.7, p. 90
A subset S of R is closed if the limit L of any convergent
sequence sn of points in S also lies in S.

If a set S contains the supremum and infimum of any bounded
subset of itself, then it contains the limit of any convergent
monotone sequence of its points, whence it contains the limit of
any convergent sequence of its points, since any such sequence
admits a monotone subsequence with the same limit.
Conversely, it is easy to show that a closed set does contain the
supremum and infimum of any bounded subset. Thus a closet
subset of R is exactly one for which the Least Upper and
Greatest Lower Bound Properties hold.
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