FINAL EXAM

Math 327B

name

Show all work; doing this may help you get more partial credit for problems done incorrectly. Use the backs of the test pages as necessary.

1. Show that there is no continuous function g on the interval [0,1] such that $g(\frac{1}{2n}) = \frac{1}{3}$ while $g(\frac{1}{2n+1}) = \frac{1}{2}$ for all positive integers n.

2. Let f be a differentiable function on the unit interval [0,1] such that $f(\frac{1}{n}) = 0$ for all positive integers n. Show that there are infinitely many $x \in [0,1]$ such that f'(x) = 0.

3. Work out a power series expansion of $\int_0^x e^{-t^3} dt$. For which x does this series converge?

4. Let f(x) = 1/|n| if x = m/n is rational, with $m, n \in \mathbb{Z}$ and m/n in lowest terms. Let f(x) = 0 is x is irrational. Determine whether or not f is integrable on [0, 1] and compute the integral $\int_0^1 f(x) dx$ if it exists.

5. The following statements are either theorems proved in class, or else *misstatements* of such theorems. Correct each, or mark it as already correct.

(a) If the derivative of a function f is nonnegative at a point c, then f is weakly increasing in some interval [a, b] containing c.

(b) If $\sum |a_n|$ converges, then so does $\sum a_n$.

(c) The series $\sum_{n=1}^{\infty} x^{-n}$ converges for |x| < 1.

6. Determine the set of positive real numbers k such that $\sum_{n=0}^{\infty} \frac{1}{1+n^k}$ converges. Indicate which tests you are using to determine this set.

7. Evaluate $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} e^{\frac{i+\frac{1}{2}}{n}}$, by realizing this sum as a Riemann sum of a suitable function.

8. Show that there is $x \in \mathbb{R}$ with $\cos x = x$.