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Last time I started to cover infinite series
∑∞

k=0 fk(x) of functions
defined on an interval I, showing that if there are positive
constants M0,M1, . . . such that

∑∞
k=0 Mk converges and

|fk(x)| ≤ Mk on I, then
∑∞

k=0 converges uniformly to its sum f (x)
on I, so that in particular f (x) is continuous on I if the fk are.
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Now I want to consider the most important special case, namely
the one in which there is a constant a with fk(x) = ak(x − a)k for
some constant ak . I call the series

∑∞
k=0 akxk a Taylor series in x ;

in the special case a = 0 it is called a power series. Any such
series converges trivially at x = a to a0, thanks to a convention
for Taylor series that 00 = 1. The first result is that Taylor series
cannot flip wildly back and forth between convergence and
divergence as |x − a| increases from 0.

Interval of Convergence Theorem: Proposition 9.40, p. 258

If
∑∞

k=0 ak(x − a)k converges at x = a + R, then it converges
absolutely and uniformly for [a −M,a + M] for any M with
0 ≤ M < |R|.
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Proof.
If
∑∞

k=0 akRk converges, then in particular akRk → 0 as k →∞,
whence one has |akxk | = |akRk ||( x

R )| ≤ (M
|R |)

k for k sufficiently

large and
∑∞

k=0 |akxk | converges uniformly on [−M,M] by the
Weierstrass M-test.

As a consequence, given any Taylor series
∑

k ak(x −a)k , either it
converges absolutely for all x ∈ R, or it converges only for x = a,
or there is some R > 0 such that the series converges for any
x ∈ (a − R,a + R) but diverges for any x with |x − a| > R. The
series may or may not converge, and if it does converge may do
so absolutely or conditionally, at x = a + R and x = a − R; these
cases are deliberately left ambiguous.
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In the first case one says that
∑

k akxk has infinite radius of
convergence; in the second case it has radius of convergence
0. In the last case one says that this series has radius of
convergence R.
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Example

The series
∑∞

k=0
(x−a)k

k! has infinite radius of convergence. The
series

∑∞
k=0 k!(x − a)k radius of convergence 0. The series∑∞

k=0(x − a)k has radius of convergence 1, diverging at both

endpoints x = a − 1 and x = a + 1. The series
∑∞

k=1
(−1)k (x−a)xk

k
also has radius of convergence 1; this last series converges at
x = a + 1 but diverges at x = a − 1.
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There is a uniform formula for the radius of convergence of any
Taylor series

∑∞
k=0 akxk , which makes use of the limit superior of a

sequence.

Formula for Radius of Convergence: compare Exercise 14,
p. 263

The radius of convergence R of a Taylor series
∑∞

k=0 ak(x − a)k is
given by the formula R = 1

limk→∞|ak |1/k , interpreting 1
0 as∞ and 1

∞
(for this purpose only) as 0.
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This follows at once from the Root Test for convergence (proved
in HW). The ambiguous cases of x = a ± R, which are not settled
by this test, are irrelevant to the definition of the radius of
convergence. There is a similar test based on the Ratio Test,
which is less powerful but often easier to apply: if lim |ak |

|ak+1|
exists

(allowing∞ as a possible value), then R equals this limit. Note
that the ratio here is | ak

ak+1
|, not |ak+1

ak
| as in the ratio test.
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I now digress a bit from Taylor series to discuss term-by-term
differentiation of sequences of functions in general. As
mentioned previously, there is no guarantee in general that even
the uniform limit f of a sequence of differentiable functions is
differentiable at any point. We will see later that in fact any
continuous function on a closed bounded interval is the uniform
limit of polynomial functions on this interval and that there are
continuous functions that are not differentiable at any point.
Nevertheless, we have the following result.
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Theorem 9.33, p. 252
Let fn be a pointwise convergent sequence of functions with
continuous derivatives on an interval I = [a,b] such that the
sequence f ′n converges uniformly on I, say to g, and let
f (x) = limn→∞ fn(x). Then fn converges uniformly on I to f , f is
differentiable on I, and we have f ′ = g on I.
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Proof.
Integrability of uniformly convergent sequences guarantees that
limn→∞(fn(x)− fn(x0)) = limn→∞

∫ x
x0

f ′n(x)dx = f (x)− f (x0) =∫ x
x0

g(t)dt for x0, x ∈ I. Now the result follows at once from the
Fundamental Theorem of Calculus, together with the continuity
of g.
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Proposition 9.40, p. 258
Given a Taylor series

∑∞
n=0 an(x − a)n with a positive (or infinite)

radius of convergence R, its sum f is differentiable on
(a − R,a + R), with derivative f ′(x) given by the term-by-term
differentiated series

∑∞
n=1 nan(x − a)n−1. We also have∫ x

a f (t)dt =
∑∞

n=0 an
(x−a)n+1

n+1 for |x − a| < R.
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Proof.
The second assertion follows at once since integration
commutes with uniform limits. We have
limn→∞|an|1/n = limn→∞((n + 1)|an+1|)1/n = limn→∞(

|an−1|
n )1/n, so

that all three series have the same radius of convergence. Then
the first assertion follows at once from the previous theorem.
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Starting from the geometric series, which is the only Taylor series
we know how to sum at this point, we can use this result to vastly
enlarge our repertoire of series with known sums. For example,
we have

∑∞
n=0

xn+1

n+1 = − ln(1− x) for |x | < 1. Note in this case that
the series converges as x = −1 even though the geometric series
does not. We would expect that

∑∞
n=0

(−1)n+1

n+1 = − ln(2); but note
that we cannot yet prove this with the tools we have so far. I will
state a result after the midterm that will justify this formula.
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