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Following up from last time, let (fn(x)) be a sequence of
functions fn defined on an interval I such that the sequence fn(x)
of numbers converges, say to f (x), for all x ∈ I. The function f is
then called the pointwise limit of the fi .

Example
If fn(x) = xn and I = [0, 1], then f (x) = 0 for 0 ≤ x < 1, since
limn→∞ xn = 0, while f (1) = 1. Observe that each fn(x) is
continuous on I but f (x) is not. Note also that the derivative g′ of
any differentiable function g is the pointwise limit of the

continuous functions gn(x) =
g(x+ 1

n )−g(x)
1
n

.
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This example shows that pointwise limits of sequences of
functions can fail to have the same nice properties as the
functions themselves. One would like conditions under which this
kind of pathology does not occur, so that the limit of continuous
functions is continuous. Note first that it is not a question here of
being defined on a closed bounded interval, since in the
example I is closed and bounded.
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Instead I need to impose conditions on the convergence here. I
say that the functions fn(x) converge to f (x) uniformly and call
f (x) the uniform limit of the fn(x) if for every ϵ > 0 there is an index
N such that |fn(x)− f (x)| < ϵ for all n ≥ N and all x ∈ I (see the
Definition on p. 245 of the text). This condition depends on both
the functions fn(x) and the interval I; observe for example that
the convergence of fn(x) to f (x) is uniform on [0, α] for any
α ∈ (0, 1): on this interval the function f (x) is the 0 function, and
the increasingness of fn(x) shows that if N is chosen so that
αN < ϵ, then indeed |fn(x)− f (x)| < ϵ for all n ≥ N and x ∈ [0, α]
(since also αn ≤ αN in this situation).
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On the other hand, the convergence of the same sequence
fn(x) of functions to f (x) is not uniform on (β, 1) for any β < 1. If it
were, then for ϵ = 1/2 I would have in particular
|fN(x)− f (x)| = xN < 1/2 for x ∈ (β, 1). Letting x approach 1 from
below, I get a contradiction, since limx→1− xN = 1. The theorem
that emerges from this example and this definition is then

Uniform Convergence Theorem; Theorem 9.31, p. 249
If f (x) is the uniform limit of continuous functions fn(x) on an
interval I, then f (x) is continuous on I.
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Proof.
Now I get to do an ϵ/3 proof, for the first time in the course.
Given x ∈ I and ϵ > 0, first choose N so that |f (x)− fn(x)| < ϵ/3 for
n ≥ N and x ∈ I. Then choose δ > 0 so that |fN(x)− fN(y)| < ϵ/3
whenever |x − y | < δ and y ∈ I. Then I get
|f (x)− f (y)| ≤ |f (x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f (y)| < 3ϵ

3 = ϵ,
as desired, under the same hypothesis on x and y .

I define an infinite series
∑∞

i=1 fi(x) of functions in the same way
as for infinite series of numbers, namely as the corresponding
sequence sn(x) =

∑n
i=1 fi(x) of partial sums of the functions. I say

that
∑∞

i=1 f (x) converges to f (x) uniformly on an interval I if sn(x)
converges to f (x) uniformly on I. This occurs if and only if the
sequence of functions tn(x) converges to 0 uniformly on I, where
tn(x) =

∑∞
i=n fi(x). There is a similar definition for

∑∞
i=1 fi(x) to be

uniformly Cauchy on I.
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Weierstrass M-test
Given a series

∑∞
i=1 fi(x) of functions fi(x) on an interval I,

suppose there is a convergent series
∑∞

i=1 Mi of numbers Mi such
that |fi(x)| < Mi on I. Then

∑∞
i=1 fi(x) converges absolutely and

uniformly to its sum on I. In particular, this sum is continuous on I if
the fi are.

Proof.
The partial sums of

∑∞
i=1 Mi are bounded, whence the partial

sums of
∑∞

i=1 |fi(x)| have the same bound and
∑∞

i=1 fi(x)
converges absolutely. Denote its sum by f (x). The difference
f (x)−

∑n
i=1 fi(x) =

∑∞
i=n+1 fi(x) is then uniformly bounded by a

constant approaching 0 as n goes to infinity and
∑∞

n=1 fi(x)
converges uniformly, as desired.
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Another example of the benefits of uniform convergence comes
from integration. Here, in addition to the Fundamental Theorem
of Calculus mentioned previously, I use that

∫ b
a f (x)dx exists if f is

continuous on [a,b]; that this integral can be interpreted as the
area under the graph of f (x) on this interval, assuming that f (x) is
nonnegative there; that integration is linear, taking sums of
functions to the sum of their integrals; and that
|
∫ b

a f (x)dx) ≤
∫ b

a |f (x)|dx . Also if 0 ≤ f (x) ≤ g(x) on [a,b] and
f (x),g(x) are integrable on this interval, then∫ b

a f (x)dx ≤
∫ b

a g(x)dx .
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Example

If fn(x) = n2x for x ∈ [0, 1/n], fn(x) = 2n − n2x for
x ∈ [1/n, 2/n], fn(x) = 0 for all other x ∈ [0, 2], then fn(x) → f (x) = 0
pointwise on [0, 2], since for any x > 0 we have fn(x) = 0 for all
sufficiently large n, while fn(0) = 0 for all n. Yet

∫ 2
0 fn(x)dx = 1 for

all n, so that
∫ b

a f (x)dx is not the limit of
∫ b

a fn(x)dx .
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Once again uniform convergence saves the situation.

Theorem 9.32, p. 250
If fn(x) is a sequence of continuous functions converging
uniformly to f (x) on an interval [a,b], then∫ b

a fn(x)dx →
∫ b

a f (x)dx as n → ∞.

Proof.
Since the fn(x) converge uniformly to f (x), it follows that f (x) is
continuous and thus integrable on [a,b]. Given ϵ > 0, choose N
so that |f (x)− fn(x)| < ϵ

b−a on [a,b] for n ≥ N. Then

|
∫ b

a fn(x)− f (x)dx | ≤
∫ b

a |fn(x)− f (x)|dx < ϵ for n ≥ N, as
desired.
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By contrast, given a uniformly convergent sequence (fn) of
differentiable functions fn on an interval I, there is no guarantee
that the limit function f is even differentiable, much less that the
sequence f ′n(x) converges to f ′(x) for any x ∈ I. Using uniform
convergence I will develop the theory of Taylor series next week;
that is, of series of functions of the form

∑∞
k=0 ak(x − a)k for

ak ∈ R and a fixed constant a.
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