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I begin by mentioning that there are an enormous number of
conditionally convergent series, far more than the Alternating
Series Test alone can provide. The next theorem massively
generalizes this test.

Abel’s Theorem
Let

∑∞
i=1 aibi be a series such that ai ≥ ai+1 for all i,ai → 0 as

i →∞ and such that the partial sums of the series
∑∞

i=1 bi are
bounded (one does not need this series to converge). Then∑∞

i=1 aibi converges.

The Alternating Series Test is the special case where bi = (−1)i ;
but note for example that one could replace the alternating
pattern of signs here by any even-periodic pattern, so that
bi = ±1 for all i and there is k with bi = bi+2k for all n, provided
that there are the same number of 1s and -1s among b1, . . . ,b2k .
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This last result can be used to show that the series
∑∞

n=1 an sin nx
converges for all x 6= 0, provided that the sequence an of
coefficients decreases to 0 as n→∞, thanks to a clever formula
for the partial sums of

∑m
n=0 sin nx which shows that this sum is

bounded in m for any x 6= 0. Series of this sort are called Fourier
series and are of considerable importance in physics and
engineering as well as mathematics. They can for example be
used to compute the sum of the p-series

∑∞
k=1

1
kp for any positive

even integer p.
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Now I explore conditionally convergent series in more detail.
Given one such, say

∑∞
n=1 an, set pn = an if an ≥ 0, while pn = 0

otherwise; similarly set qn = −an if an ≤ 0 and qn = 0 otherwise. It
is easy to check that pn,qn ≥ 0 for all n and both series

∑
n pn

and
∑

n qn diverge in this situation, since
∑

n an does not
converge absolutely. On the other hand, convergence of

∑
n an

forces both pn → 0 and qn → 0 as n→∞.
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A particular example is the alternating harmonic series∑∞
k=1

(−1)k+1

k ; here pn = 1
2n−1 ,qn = 1

2n . Recall that I showed in an
earlier lecture that it is possible to rearrange the terms of this
series so that its sum gets multiplied by 3/2. Now I will prove a
remarkable generalization of this example.

Rearrangement Theorem
The terms of a conditionally convergent series

∑
an may be

rearranged to make the series converge to any desired sum S.
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Proof.

Given S, let N1 be the smallest index such that
∑N1

n=1 pn > S; such
an N1 exists since

∑
pn diverges. The choice of N1 guarantees

that s1 =
∑N1

n=1 pn lies between S and S + pN1
. Take p1, . . . ,pN1

to
be the first N1 terms of the rearranged series. Now choose the
least index N2 with s2 = s1 −

∑N2
n=1 qn < S; such an N2 exists since∑

n qn diverges. Then we have s2 > S −qN2
. Take −q1, . . . ,−qN2

to
be the next N2 terms of the rearranged series. Now

∑∞
n=N1+1 pn

still diverges, so there is a least index N3 > N1 with
s3 = s2 +

∑N3
n=N1+1 pn > S, so that s3 < S + pN3

. Take pN1+1, . . . ,pN3

to be the next block of terms in the rearranged series.
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Proof.
Continue in this way, adding previously unused negative terms
until the partial sum first dips below S, then adding previously
unused positive terms until this sum first goes above S, and so on.
The upshot is that all partial sums of the rearranged series lie
within a suitable single term pn or qn of S. Now given any ε > 0,
there is an index N such that pn,qn < ε for n ≥ N; the
construction shows that all partial sums of the rearranged series
lie within ε of S provided they include all terms
p1, . . . ,pN ,q1 . . . ,qN , as they do past a certain point. Thus the
rearranged series converges to S, as desired.
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This result is quite startling when you first see it, but as you gain
experience it will become less surprising; the idea is simply that
since the positive terms can push the sum as far to the right as
desired, and similarly the negative terms can push the sum as far
to the left as desired, one can strike an arbitrary balance
between these terms.
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On the other hand, rearrangements of terms have no effect on
the sums of absolutely convergent series.

Theorem
Any rearrangement of the terms of the absolutely convergent
series

∑
an converges to the same sum.
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Proof.
If
∑∞

n=1 an converges absolutely then the subseries
∑∞

n=1 pn and∑∞
n=1 qn defined above also converge. Any rearrangement of∑∞
n=1 pn converges to the same sum, since if

∑
pn = S, ε > 0, and

N is chosen large enough that
∑N

n=1 pn > S − ε, then any
rearrangement

∑
p′n of

∑
pn has all of p1, . . . ,pN occurring

among p′1, . . . ,p
′
M for sufficiently large M, whence the partial

sum
∑r

n=1 p′n also lies within ε of S for sufficiently large r . Similarly
any rearrangement of

∑
qn converges to the same sum, and

the result follows.
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Following Chapter 9, I now turn to sequences and series of
functions fn(x) rather than numbers an. These provide a powerful
tool not only for studying the convergence of many sequences
or series of numbers at the same time (one for every value of the
variable x) but also (given additional tools from calculus)
working out the sums of a number of series. I already gave the
example

∑∞
n=0

xn

n! which converges absolutely for any x ∈ R, by
the ratio test. Similarly the ratio test also shows that the series∑∞

n=0(−1)n x2n+1

(2n+1)! and
∑∞

n=0(−1)n x2n

(2n)! converge absolutely for
any x ∈ R. I will identify the sums of these series later.
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