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I will wrap up my treatment of Riemann integration with a few
words about improper integrals (that is, integrals such that either
the integrand is unbounded or the interval of integration is
infinitely long, or both).
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Definition
Given a point a and a function f integrable on [a,b] for all
b > a, we write

∫∞
a f (x)dx = L if the limit of

∫ b
a f (x)dx as b→∞

exists and equals L. If instead f is integrable on [c,b] for all
c ∈ (a,b) (with b fixed) then we write

∫ b
a f (x)dx = L if the limit of∫ b

c f (x)dx exists as c → a+ and equals L; we make a similar
definition if

∫ c
a f (x)dx exists for all c ∈ (a,b), taking the limit of∫ c

a f (x)dx as c → b+.

Lecture 5-26: Riemann integration, concluded May 26, 2023 3 / 1



Example

The function f (x) = x r has antiderivative x r+1

r+1 if r 6= −1; it follows at
once that

∫∞
1 x r dx exists if and only if r < −1 and equals −1

r+1 in

this case. Similarly,
∫ 1

0 x r dx exists if and only if r > −1 and equals
1

r+1 in this case. The integral
∫∞

0 x r dx never exists; the integrand
always “runs into trouble”, either at 0 or∞. Also

∫∞
0

dx
1+x2 dx = π

2 .
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As with series, there is a notion of absolute convergence for
integrals: we say that

∫∞
a f (x)dx converges absolutely if∫∞

a |f (x)|dx converges and this implies that
∫∞

a f (x)dx
converges. Also the Comparison and Limit Comparison Tests
apply. If we have f (x) ≥ g(x) ≥ 0 on [a,∞) and if

∫∞
a f (x)dx

converges, then so does
∫∞

a g(x)dx . If instead f (x),g(x) ≥ 0 and
if limx→∞

f (x)
g(x) exists and is nonzero and finite, then

∫∞
a f (x)dx

converges if and only if
∫∞

a g(x)dx does. The same tests apply
for the other kind of improper integral, where f (x),g(x) blow up
at x = a (or x = b), but at no other point in (a,b). For example,∫ 1

0
1√

1−x2
dx converges: the integrand 1√

1−x2
is bounded above

by 1√
1−x

, and
∫ 1

0
1√
1−x

dx = (−2)(1− x)1/2|10 = 2.
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This last integral is especially interesting because once we know
that it converges we can define the number π via
π/2 =

∫ 1
0

dx√
1−x2

, without any use of geometry or trigonometry.

Again as with series, there is a notion of conditional
convergence for integrals: if

∫∞
a f (x)dx converges but does not

converge absolutely, then we say it converges conditionally. A
classical example of a conditionally convergent improper
integral is

∫∞
π

sin x
x dx . Here integration by parts shows that∫∞

π
sin x

x dx = − sin x
x2 |∞π +

∫∞
π

cos x
x2 dx ; since this last integral

converges absolutely, the first integral converges. It does not
converge absolutely, since for any x lying within π/3 of an odd
multiple kπ/2 of π/2 we have | sin x

x | >
1

(k+1)π , whence∫∞
π |

sin x
x |dx ≥

∑∞
n=0

2π
3π(2n+2) and the series diverges. The integral∫∞

0
sin x

x dx can be shown to converge to π/2.
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In fact we have an analogue of Abel’s Theorem for integrals.
Recall that Abel’s Theorem for series states that

∑
anbn

converges (usually conditionally) if a1 ≥ a2 ≥ . . . ,an → 0 as
n→∞, and

∑
bn has bounded partial sums. Using partial

integrals
∫ x

a g(t)dt one can similarly show that
∫∞

a f (t)g(t)dt
converges (again usually conditionally) if f (t) is weakly
decreasing, f (t)→ 0 as t →∞, and there is a uniform bound for
the partial integrals

∫ x
a g(t)dt for all x ≥ a. In the case of the

integral
∫∞

0
sin x

x dx , if we compare it to the absolutely

convergent integral
∫∞

0
sin2 x

x2 dx , we find that the second
integrand, unlike the first, is always nonnegative (suggesting that
the second integral is larger), but its absolute value is less than
that of the first (suggesting that the second integral is smaller).
Remarkably enough, these two effects exactly cancel out. The
value of

∫∞
0

sin2 x
x2 dx is also π/2.
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I will conclude with the Integral Test for convergence of series
with nonnegative terms (which many of you will have seen; this is
proved in the text as Corollary 9.11 on p. 233). Let f (x) be a
weakly decreasing function of x ∈ R+. Then the series

∑∞
n=1 f (n)

converges if and only if the integral
∫∞

1 f (x)dx does. In
particular, since

∫∞
1 xp dx converges if and only if p < −1, I

deduce that
∑∞

n=1 np converges if and only if p < −1; this
recovers the p-series test that I proved earlier using the Cauchy
Condensation Test. The Integral Test follows since a typical partial
sum

∑m
n=1 f (n) is bounded between

∫ m
1 f (x)dx and

∫ m+1
1 f (x)dx ,

so that the partial sums of the series have a finite limit if and only
if the partial integrals

∫ x
1 f (t)dt do as x →∞.
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A benefit of the Integral Test is that it gives a good indication of
just how fast divergent series

∑∞
n=1 f (n) diverge. For example, we

already know that the harmonic series
∑∞

n=1
1
n diverges; but the

proof of the Integral Test shows that the difference∑m
n=1

1
n −

∫ m
1

1
x dx =

∑m
n=1

1
n − ln m decreases with m and has a

finite limit as m→∞. This limit is called the Euler-Mascheroni
constant and is usually denoted γ. It is virtually certain that γ is
irrational (it is known that if γ is rational and equal to p/q in
lowest terms, then q has at least 20800 decimal digits), but no
one knows this for sure.
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