Lecture 5-24: Riemann integration, continued
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Last fime | showed that any confinuous function on an interval
[a, b] is (Rienann) integrable on that inferval; now | want fo
prove the Fundamental Theorem of Calculus, which shows that
the integral of any such function is differentiable and in fact an

antiderivative of the function itself. | begin with a simple lemmma.

Theorem 6.12, p. 150

A function f is integrable on an interval [a, b] if and only if it is
infegroble on [a, c] and [c, b] for ony c € [a, b]; in this case we

have fa x)ax = [5f( dx+fc X) ax.
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Proof.

Indeed, if f is integrable on [a, b] and ¢ € [a, b] then for every

e > 0 there is a partition P of [a, b] with U(f, P) — L(f,P) < e. Add
the point ¢ to P (if necessary) to construct a new partition P’;
then U(f, P") — L(f,P’) < e, since L(f, P") > L(f, P), U(f,P") < U(f, P).
Intersecting P’ with the intervals [a, ¢, [c, b] yields two partitions
Py, P, of [a, ], [c, b], respectively, with U(f, P;)) — L(f, P;) <,
whence f is infegrable on both intervals. Conversely, if £ is
integrable on both [a, ¢] and [c¢, b] and partitions Py, P, of

[a, c],[c, b] are chosen so that U(f, P) — L(f, P;) < ¢/2, then the
union P of Py, P, is a partition of [a, b] with U(f, P) — L(f,P) <

e, U(f, P) = U(f, Py) + U(f, P), L(f, P) = L(f, Py) + L(f,P,). Aseis
arbitrary the result follows. Ol

v
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Ifa>bandfis inTegrobIe on [b, a] then we set

fo x) dx = — [5 f(x) dx. Then the above formula holds for all
a,b,c whenever oII reIevonT infegrals are defined.
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Now | can prove a strengthened form of one of the
Fundamental Theorems of Calculus.

Theorem 6.29, p. 168

Let f be integrable on [a, b] and continuous at ¢ € [a, b]. Set
F(x) = fc‘f f(f) dt for x € [a, b]. Then F is differentiable at ¢ and
F'(c) = f(c).
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Proof
We already know that f is infegrable on [a, x], so the definition of
F(x) makes sense, and FX=F() e T This last fraction is

bounded between my and M, where my is the infimum and My

the supremum of f in the interval between ¢ and x. Continuity at
¢ forces my, My — f(c) as x — ¢ and the result follows. O

v

In particular, if f is continuous on [a, b] and F(x fa 1) dt, then
F'(x) = f(x) for all x € [a, b], so that f has an on’rlderlvo’rlve this is
what Theorem 6.29 actually says. In the special case f(t) = 1/f,
this completes fully justifies my earlier construction of the natural
logarithm In x: we now know that 1/x has an anfiderivative,
whence | can describe In x as the unique antiderivative of 1/x
taking the value 0 at x =1,
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As a simple corollary we get

Theorem 6.22, p. 161

Let f be continuous on [a, b] and F be any anfiderivative of f.
Then [2 f(x) dx = F(b) — F(q).
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Proof.

The Mean Value Theorem shows that any two antiderivatives of f
differ by a constant (so that the conclusion of the theorem is
independent of the choice of F). Choosing a particular
antiderivative F and setting G(x) = f(’; f(t) dt for x € [a, b] we
have G(x) = F(x) + ¢ for some constant ¢; plugging in x = a, we
get the desired result. Ol

v
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It is also very useful to know that integration is linear.

Linearity of the integral: Theorem 6.15, p. 1563

If f, g are infegrable on [a, b] and c is constant, then f + g and
cf are also both m’regroble with

fo (f£9)(x) dx = fa dxifa a(x) dx, fa cf(x) dx = cfé,3 f(x) dx
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Proof.

The second assertion is clear, since the upper Darboux sums of
cf are just the multiples by ¢ of the upper or lower Darboux sums
of f (according as ¢ is positive or negative). Now it suffices to
show that [2(f + g)(x) dx = [2 f(x) dx + [2 g(x) dx. For this we
just observe that the infimum m. 4 of f + g on any inferval [c, d] is
at least the sum my_ , + mg 4 of the infima m_ 4, M, 4 of f,g on

[c, d]; similarly the supremum M, 4 of f + g on [c, d] is at most the
sum of the suprema Mf:,dv Mg’d of f,g on [c, d], whence
L(f+g.P) > L(f,P)+ L(g,P), U(f + g,P) < U(f, P) + U(g, P) for any
partition P. The result follows. Ol
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| conclude with

Mean Value Theorem for intfegrals

Let f, g be continuous on [a, b] with g(x) > 0 for all x € [a, b].
Then there is ¢ € [a., b] with fc‘,’ f(x)g(x) dx = f(c) fé’ a(x) dx.
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Proof
Letting m, M be the minimum and maximum of f on [a, b] we
have mg(x) < f(x)g( ) < Mg(x) on [a b]. whence fc? x)g(x) dx

lies between m [° g 5 9(x)dx and M g 5 9(x) dx. By the Intermediate
Value Theorem ’rhere |s c e |a,b] such Tho’r the conclusion
holds. O

In particular, taking g to be the constant function 1, we see that
for any integrable f we have fé’ f(x) dx = f(c)(b — a) for some

c € [a, b]. Some authors call just this result the Mean Value
Theorem for Integrals; this is what is stated in Theorem 6.26.
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