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I will begin by reviewing the definition of continuity: a function f
defined on an interval (a,b) containing a point c is continuous
at a point c if limx→c f (x) = f (c), or equivalently given any
sequence (cn) of points converging to c such that f (cn) is
defined for all n, we have that (f (cn)) converges to f (c). If
instead f is defined e.g. on an interval [a,b] and c = a, then we
say that f is continuous at a if limx→a+ = f (a); a similar definition
holds for c = b. If limx→c

f (x)−f (c)
x−c exists for all c ∈ [a,b] (replacing

this limit by the appropriate one-sided limit if c = a or c = b),
then we say that f is differentiable on [a,b] and write
f ′(c) = limx→c

f (x)−f (c)
x−c for its derivative at c.
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The three most important properties of a continuous function f
on a closed bounded interval [a,b] can be neatly captured in
the single statement that f [a,b], the image {f (x) : x ∈ [a,b]} of
the interval [a,b] under f , is another closed bounded interval
[m,M] for some m and M.
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Thus in particular f is bounded on [a,b] (Boundedness Theorem);
it takes on a maximum and a minimum on [a,b] (Extreme Value
Theorem); and it takes on every value between its maximum and
minimum (Intermediate Value Theorem). Going beyond the text,
I also showed that any derivative f ′ of a differentiable function
on an interval [a,b] also satisfies the Intermediate Value
Theorem, whether or not it is continuous on this interval; but it
need not satisfy either the Boundedness Theorem or the Extreme
Value Theorem.
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The most important theoretical result about derivatives is the
Mean Value Theorem, which asserts that if f is continuous on
[a,b] and differentiable on (a,b) then there is some c ∈ (a,b)

with f ′(c) = f (b)−f (a)
b−a . This is used to show, for example, that such

an f is weakly increasing on [a,b] if and only if f ′(x) ≥ 0 for all
x ∈ [a,b].
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Turning now to infinite series, recall first that a series
∑

an with
nonnegative terms an converges if and only if its partial sums are
bounded. This leads to the following battery of convergence
tests. Throughout we assume that an,bn ≥ 0 for all but finitely
may indices n.
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Comparison Test:
∑

an converges if an ≤ bn for all but finitely
many n and

∑
bn converges;

∑
an diverges if an ≥ bn for all

but finitely many n and
∑

bn diverges.
Limit Comparison Test: If limn→∞

an
bn

exists and is finite and
nonzero, then

∑
an converges if and only if

∑
bn does.

Ratio Test: If limn→∞
an+1
an

exists and equals L, then
∑

an
converges if L < 1 and diverges if L > 1.
p-series: The series

∑∞
n=1

1
np converges if and only if p > 1.
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Given a series
∑

an for which we do not have an ≥ 0 for all but
finitely many n, we have
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nth term Test:
∑

an diverges if limn→∞ an either fails to exist or
exists but has a nonzero value.
Absolute Convergence Test:

∑
an converges whenever∑

|an| does.
Alternating Series Test:

∑
(−1)nan converges whenever

a1 ≥ a2 ≥ . . . and an → 0 as n→∞.
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A Taylor series (at x = a, where a is a constant) is an infinite series
of the form

∑
an(x − a)n. A Taylor series is called a power series if

a = 0. Any Taylor series has a radius of convergence R, which is
either 0,∞, or a positive real number. If R = 0, then the series
converges only at x = a, while if R =∞, then the series
converges for all x . If R is finite and nonzero, then the series
converges absolutely for |x − a| < R and diverges for |x − a| > R;
either behavior is possible for |x − a| = R. We have
R = limn→∞ | an

an+1
| whenever this limit exists, where for this purpose

we allow∞ as a limit.
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In addition to abstract Taylor series, we have the Taylor series at
x = a of an (infinitely differentiable) function f , which is defined
to be

∑∞
n=0

f (n)(a)
n! (x − a)n. This may or may not converge to f (x)

in general. The three most important special cases where it does
converge to f (x) for all x , all with a = 0, are the series
ex =

∑∞
n=0

xn

n! , sin x =
∑∞

n=0
(−1)nx2n+1

(2n+1)! ,cos x =
∑∞

n=0
(−1)nx2n

(2n)! ;

another important series is − ln(1− x) =
∑∞

n=0
xn+1

n+1 . This last series
is valid for x ∈ [−1, 1).
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Partial sums of Taylor series are a special case of convergent
sequences (fn) of functions fn on an interval I, which are
sequences fn such that the sequence fn(x) of numbers
converges for all x ∈ I. Writing f (x) = limn→∞ fn(x) for x ∈ I, we call
f the pointwise limit of the fn. If (fn) converges uniformly on I, so
that (by definition) for every ε > 0 there is an index N with
|fn(x)− f (x)| < ε for all n ≥ N and x ∈ I, then f is better behaved
than in general: in this situation f is continuous if the fn are and
furthermore

∫ b
a fn(x)dx →

∫ b
a f (x)dx . A series

∑∞
n=1 fn of functions

fn converges uniformly on an interval I if there are constants M1
for i ≥ 1 such that |fi(x)| ≤ Mi for all i and

∑
Mi converges (the

Weierstrass M-test). Unfortunately, even the uniform limit of
differentiable functions need not be differentiable. Likewise, the
pointwise limit of continuous functions need not be continuous.
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Logistics are the same as for the last exam; you are allowed one
sheet of notebook paper with handwritten notes on front and
back and all work will be done on the test paper. The midterm
will cover Chapter 3 and 4 and the first four sections of Chapter
9 in the text, together with the fact about derivatives on closed
bounded intervals mentioned above.
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