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By way of contrast with Taylor series I now give an example of a
function defined by a uniformly convergent series that is
continuous everywhere but differentiable nowhere; this example
is essentially the same as the one in the last section of Chapter 9
(pp. 266,7) in the text. Let f (x) = f0(x) be the distance from x to
the nearest integer, so that f (x) = x for x ∈ [0, 1/2] while
f (x) = 1 − x for x ∈ [1/2, 1]; note that f (x) is periodic with period 1.
For every positive nonnegative integer i let fi(x) = f (4ix), the
distance from 4ix to the nearest integer. Finally let
g(x) =

∑∞
i=0 4−i fi(x).
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Since 0 ≤ fi(x) ≤ 1/2 for all x , the ith term of this sum is bounded
in absolute value by 4−i/2, whence the series converges
(absolutely and) uniformly to a continuous function, by the
Weierstrass M-test. I claim that f is not differentiable at any x ∈ R.
To prove this it suffices to produce a sequence xi converging to x
such that the difference quotient g(x)−g(xi)

x−xi
has no limit as i → ∞.

To this end, use decimal notation in base 4 to write any x ∈ R as
n + y for some n ∈ Z and y = 0.d1d2 . . . =

∑∞
i=1 di4−i , where each

di is 0, 1, 2, or 3. To avoid ambiguity, do not allow di = 3 for all but
finitely many i, replacing any such expansion by the equivalent
one for which di = 0 for all but finitely many i. Set yi = y ± 4−i ,
where the sign is + if di = 0 or 2, while it is − if di = 1 or 3; then set
xi = n + yi . Then it is easy to check that fj(xi) = fj(x)± 4j−i if j ≤ i,
while fj(xi) = fj(x) if j > i.
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It follows that the difference quotient g(x)−g(xi)
x−xi

is a sum of i terms,
each ±1, so is an even integer if i is even and an odd integer if i
is odd. But no sequence alternating between even and odd
integers can possibly converge (if it did, its limit L would have to
be within say 1/3 of both an even and an odd integer), whence
g′(x) exists for no x , as claimed. It is also not difficult to check
that g is not monotone on any interval [a,b] with a < b. Roughly
speaking, the graph of g is infinitely krinkly. The kinks in the graph
of each fi , preventing it from being differentiable at more and
more points as i → ∞, combine to destroy the differentiability of
g at any point. In fact there are other examples of infinite series
f (x) =

∑
i fi(x) such that each fi is differentiable everywhere and

yet f is still differentiable nowhere.
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To continue with my parade of horrors, I now present an
example of a function that is infinitely differentiable everywhere
but which fails to be analytic at x = 0 (that is, does not admit a
convergent expansion in powers of x). See Theorem 8.22 on p.

221. Set f (x) = e− 1
x2 for x ̸= 0, f (0) = 0. The chain rule shows that f

is indeed infinitely differentiable at all x ̸= 0, with its nth derivative

f (n) taking the form pn(1/x)e− 1
x2 for some polynomial pn. What

about the point x = 0? Taking the limit of pn(1/x)e− 1
x2 = pn(1/x)

e1/x2 as

x → 0 is equivalent to taking the limit of pn(y)
ey2 as y → ∞; applying

L’Hopital’s Rule several times, we see that this last limit is 0 for any
polynomial pn. Hence all derivatives of f exist at 0 as well and
are equal to 0. The Taylor series of f at x = 0 is the 0 series, which
clearly does not converge to f . There are worse examples of
infinitely differentiable functions g that are not analytic at any
point.
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There is one more important power series arising often in
applications, namely the binomial series, or Newton’s binomial
expansion (see Theorem 8.18 on p. 217). To motivate this series,
recall first the binomial theorem, which asserts that
(1 + x)n =

∑n
m=0

(n
m

)
xm. Note that one formula for the coefficient(n

m

)
, namely n!

m!(n−m)! , makes no sense if the exponent n is
replaced by an arbitrary real number α; but an alternative
formula, namely n(n−1)...(n−m+1)

m! , does make sense with α in place
of n.
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Accordingly I define the binomial series as
1 +

∑∞
n=1

α(α−1)...(α−n+1)
n! xn. The ratio |an+1

an
| between the absolute

values |an+1|, |an| of the coefficients an+1,an of xn+1, xn in this
series is then |α−n|

n+1 , which approaches 1 as n → ∞; so this series
has radius of convergence 1. It can be shown that this series also
converges at x = ±1, provided that α > 0.
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To justify the series, I differentiate f (x) = 1 +
∑∞

n=1
α(α−1)...(α−n+1)

n! xn

term by term and multiply the differentiated series by 1 + x ,
which can be regarded as a power series with only two nonzero
terms. Recall that I showed earlier that the product
(
∑∞

n=0 anxn)(
∑∞

n=0 bnxn) of two absolutely convergent power
series

∑∞
n=0 anxn,

∑∞
n=0 bnxn is

∑∞
n=0 cnxn, where cn =

∑n
i=0 aibn−i

for all n. In the present case, I get (1 + x)f ′(x) = αf (x), whence
(f (x)(1 + x)−α)′ = 0 and f (x) = c(1 + x)α for some constant c;
plugging in x = 0, I show that c = 1.
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Replacing x by −x2 in the series for (1+ x)α and taking α = −1/2, I

get the series 1+
∑∞

n=1
(− 1

2 )···(−
2n−1

2 )(−1)n

n! x2n = 1+
∑∞

n=1
1·3···(2n−1)x2n

2nn!
for (1 − x2)−1/2, valid for |x | < 1. Integrating term by term and
recalling the Inverse Function Theorem I get the series for arcsin x ,
the inverse function of sin x (defined on [−1, 1] and taking values
in [0, π/2]), namely x +

∑∞
n=1

1·3···(2n−1)x2n+1

2n(2n+1)n! . As with the series for
arctan x , we pick up x = ±1 as two more points of convergence
of this series. Plugging in these values, I get two series converging
absolutely to ±π/2, respectively. These series converge much
faster than the Newton-Gregory series 4

∑∞
n=0

(−1)n

2n+1 for π derived
earlier.
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