Lecture 5-10: Power and Taylor series: examples

May 10, 2023

Lecture 5-10: Power and Taylor series: exar

May 10, 2023

æ

★ E → ★ E →

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

1/1

Last time you learned that any Taylor series $f(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$ with positive (or infinite) radius of convergence R can be integrated term by term within the radius of convergence, so that the series $g(x) = \sum_{k=0}^{\infty} \frac{a_k (x-a)^{k+1}}{k+1}$ converges for |x-a| < R and $g(x) = \int_a^x f(t) dt$ for all x in this range. I also showed that the differentiated series $h(x) = \sum_{k=1}^{\infty} k a_k (x-a)^{k-1}$ also has radius of convergence R and its term-by-term integrated series coincides with f(x), so that f(x) is differentiable and f'(x) = h(x) for |x| < R.

イロン 不良 とくほう 不良 とうしょう

A very handy result due to the Norwegian mathematician Abel asserts that if a Taylor series $\sum_{n=1}^{\infty} a_n(x-a)^n$ converges at a+R > a, then the convergence is uniform on the entire closed interval [a, a+R], so that the sum is a continuous function on that interval. The same result holds if the series converges at $a_R < a$, replacing [a, a+R] by [a-R, a]. Thus, for example, since the series for $-\ln(1-x)$, namely $\sum_{n=0}^{\infty} \frac{x_n+1}{n+1}$ has radius of convergence 1 and also converges (by the Alternating Series Test) at x = -1, its sum at that point must be $\lim_{x\to -1^+} \ln(1-x) = -\ln 2$.

In a similar way, the geometric series for $\frac{1}{1+x^2}$, namely $\sum_{n=0}^{\infty} (-1)^n x^{2n}$, which has radius of convergence 1, may be integrated term by term to the series $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, which also has radius of convergence 1. This time this series also converges at both $x = \pm 1$, so its sums at those points must be $\pm \pi/4$. The series $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \pi/4$ is called the Newton-Gregory series in the text.

Example

We have already seen that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely for all $x \in \mathbb{R}$ to the familiar exponential function e^x . More generally, for any $a \in \mathbb{R}$, the Taylor series $\sum_{n=0}^{\infty} e^{\alpha} \frac{(x-a)^n}{n!}$ also converges for all x to e^x . Next consider the closely related series $s(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, c(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$. Here one checks by the ratio test that both series have infinite radius of convergence; in applying this test to s(x), for example, one should of course look at the ratio of two successive *nonzero* terms $\frac{(-1)^n x^{2n+1}}{(2n+1)!}, \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!}$, so that one does not divide by 0. By differentiation one gets s'(x) = c(x), c'(x) = -s(x), whence by differentiation one gets that $s(x)^2 + c(x)^2$ is constantly equal to its value at 0, namely 1, since the derivative of this quantity is 0. I define $\sin x = s(x) \cos x = c(x)$. Note that s''(x) = -s(x), c''(s) = -c(x). In this way I have defined the sine and cosine functions without geometry or trigonometry.

Example

The last example occurs on p. 261 of the text (Theorem 9.42). I can also work out power series expansions for functions that I cannot even completely write down. For example, starting from the geometric series $\frac{1}{1+x^3} = \sum_{n=0}^{\infty} (-1)^n x^{3n}$, valid for all $x \in (-1, 1)$, we get the series $\int_0^x \frac{1}{1+t^3} dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+1}}{3n+1}$, valid for all x in the larger interval [-1, 1], even though there is no formula for this integral.

イロン イ理 とくほ とくほ とう

Adding the series for $\ln(1 + x)$ and $-\ln(1 - x)$, I get the series $2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$, which converges to $\ln \frac{1+x}{1-x}$ for |x| < 1. As it turns out that any positive number y can be written as $\frac{1+x}{1-x}$ for some $x \in \mathbb{R}$ with |x| < 1, I now have a convergent series which can be used to compute the natural logarithm of any positive number.

In general, given any function f(x) which admits a Taylor series expansion $\sum_{n=0}^{\infty} a_n (x-a)^n$ with a positive radius of convergence, I can differentiate this series *n* times and plug in x = a to deduce that $a_n = f^{(n)}(a)/n!$ for all *n*, where $f^{(n)}(a)$ denotes the *n*th derivative of *f* at *a*. This formula leads to a natural definition.

Definition; p. 209

Given an infinitely differentiable function f(x) on an interval (a - R, a + R) for some R > 0, its *Taylor series at* x = a is the series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$. This is the only Taylor series at x - a that has a chance of converging to f(x) for $x - a \in (-R, R)$. If it does converge to f(x) on the interval (a - R, a + R) (for some R > 0) we say that f is analytic at x = a.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Unfortunately it is in the nature of things that not all infinitely differentiable functions are analytic at all points. For example, it is known that the Taylor series at x = a of an infinitely differentiable function can be an arbitrary series, so that there is no guarantee that this series will converge at any point other than x = a. Secondly, even if the Taylor series of a function f at x = a does converge, it can converge to a function different from f. I will explore these matters in more detail later.