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Last fime you learned that any Taylor series

f(x) = 3202 ak(x — a)¥ with positive (or infinite) radius of
convergence R can be infegrated term by term within the radius
of convergence, so that the series a(x) = Zk 0 C’k(iﬁ)m
converges for [x — a] < R and g(x fo 1) dt for all x in this
range. | also showed that the dn‘feren’rlo’red series

h(x) = 332, kak(x — a)*~1 also has radius of convergence R and
its term-by-term infegrated series coincides with f(x), so that f(x)
is differentiable and '(x) = h(x) for |x| < R.
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A very handy result due to the Norwegion mathematician Abel
asserts that if a Taylor series >~ 7 ; an(x — a)" converges at

a+ R > a, then the convergence is uniform on the entire closed
interval [a, a + R], so that the sum is a continuous function on
that inferval. The same result holds if the series converges at

ap < a, replacing [a, a + R] by [a — R, a]. Thus, for example, since
the series for —In(1 — x), namely > "7 X,?j]] has radius of
convergence 1 and also converges (by the Alternating Series
Test) at x = —1, its sum at that point must be

limy_,_q1+In(1 —Xx)=—1In2.
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In a similar way, the geometric series for Toa namely
S0 o(—1)"x2", which has radius of convergence 1, may be

infegrated term by term to the series arctanx = >~ o(—1 )”%,

which also has radius of convergence 1. This time this series also
converges af both x = i] SO ifs sums atf those points must be
+n/4. The series ). 2n ) = /4 is called the Newton-Gregory
series in the text.
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We have already seen that the series Y70, X! converges
absolutely for all x € R to the familiar exponential function €.
More generally, for any a € R, the Taylor series "7 ga(x=a)" ) also
converges for all x to e*. Next ConS|der The closely reIoTed series

Ny2n+1

s(x) =2, & ;,)HX])T o(x) =30, ¢ (2n), . Here one checks by
the ratio test that both series have infinite radius of convergence;
in applying this test to s(x). for example, one should of course
Io?kn Sﬁhe r]onti% an)l‘a‘rwo successive nonzero terms

( (2:)v+1)! s —nayr SO that one does not divide by 0. By
differentiation one gets §'(x) = c(x), ¢/(x) = —s(x), whence by
differentiation one gets that s(x)2 + ¢(x)? is constantly equal to its
value at 0, namely 1, since the derivative of this quantity is 0. |
define sin x = $(X) cos x = c(x). Note that
§"(x) = —=s(x), c”"(s) = —c(x). In this way | have defined the sine
and cosine functions without geometry or trigonometry.

Lecture 5-10: Power and Taylor series: exar May 10, 2023



The last example occurs on p. 261 of the text (Theorem 9.42). |
can also work out power series expansions for functions that |
cannot even comple’rely write down. For example, starfing from

the geometric series +— = > % o(~ 1)"x3", valid for all x € (-1, 1),
we get the series [ 1+r3 ch‘ => o1 )”gf::] valid for all x in the

larger interval [—-1, 1], even though there is no formula for this
integral.
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Adding the series for In(1 + x) and —In(1 — x), | get the series

oo x2nt] i 14+x i
23 70 5n47- Which converges fo In £ for [x| < 1. As if turns out

that any positive number y can be written as }%; forsome x € R

with |x| < 1,1 now have a convergent series which can be used
to compute the natural logarithm of any positive number.
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In general, given any function f(x) which admits a Taylor series
expansion Y7 5 an(x — a)" with a positive radius of convergence,
| can differen’rio’re this series n times and plug in x = a to deduce
that a, = (M (a)/n! for all n, where f(")(a) denotes the nth
derivative of f at a. This formula leads to a natural definition.

Definition; p. 209

Given an infinitely differentiable function f(x) on an interval

(a—- I? a+ R) forsome R > 0, its Taylor series at x = a is the series
Py )(0)( a)k. This is the only Taylor series at x — a that has a
chance of converging to f(x) for x — a € (=R, R). If it does
converge to f(x) on the interval (a — R, a + R) (for some R > 0)
we say that fis analytic at x = a
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Unfortunately it is in the nature of things that not all infinitely
differentiable functions are analytic at all points. For example, it
is known that the Taylor series at x = a of an infinitely
differentfiable function can be an arbitrary series, so that there is
No guarantee that this series will converge at any point other
than x = a. Secondly, even if the Taylor series of a function f at
X = a does converge, it can converge to a function different
from f. | will explore these matters in more detail later.
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