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Last time I showed that the harmonic series
∑∞

k=1
1
k is a boundary

point among p-series
∑∞

k=1
1
k [ , in that the p-series diverges for

p ≤ 1 but converges for p > 1. On the other hand, one cannot
regard the harmonic series, or any other series, as lying on the
overall boundary between convergence and divergence for
general series with nonnegative terms, since there is no such
overall boundary. More precisely, given a divergent series, if it
diverges, there is a “substantially smaller” series which still
diverges.
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Theorem
Let S =

∑∞
i=1 ai be a series with positive terms. If S diverges, then

there is a sequence ϵi converging to 0 such that
∑∞

i=1 ϵiai still
diverges.

Proof.
Set sn =

∑n ai , ϵn = 1√
sn

. Then the partial sum∑n
i=1 ϵiai ≥

∑n
i=1 ϵnai =

√
sn → ∞ as n → ∞.

The parallel result (that if
∑

i ai converges there is a larger series
that still converges) is a little harder to prove.
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Theorem
If
∑∞

i=1 ai is a convergent series with positive terms then there is a
sequence Mi with Mi → ∞ as i → ∞ such that

∑
i Miai still

converges.
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Proof.
Let S be the sum of the given series. Then there is an index N1

such that
∑N1

i=1 ai >
S
2 , so that

∑∞
i=N1+1 ai <

S
2 . Similarly there is an

index N2 N1 with
∑∞

i=N2+1 ai <
S
4 and for any k an index Nk > Nk−1

with
∑∞

i=Nk+1 ai <
S
2k . Set Mi = 1 for 1 ≤ i ≤ N1,Mi = 2 for

N1 + 1 ≤ i ≤ N2,Mi = 3 for N2 + 1 ≤ i ≤ N3, and so on. Then∑∞
i=1 Miai =

∑∞
i=1 ai +

∑∞
i=N1+1 ai +

∑∞
i=N2+1 ai + . . .; this last sum is

bounded by S + S
2 + S

4 + · · · = 2S and Mi → ∞ as i → ∞, as
claimed.
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Last time I also introduced the notion of absolute convergence
and showed that any series that converges absolutely also
converges. There are also series which converge without
converging absolutely; such series are said to converge
conditionally. To see an example I begin by recalling

Alternating Series Test (Theorem 9.15, p. 236)

Let
∑∞

k=1(−1)k+1ak be a series such that
ak ≥ ak+1 ≥ 0 for all k , and
ak → 0 as k → ∞.

Then
∑∞

k=1(−1)k+1ak converges.
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This was proved by showing that the sequence s1, s3, . . . of odd
partial sums is decreasing and bounded below, while the
sequence s2, s4, . . . of even partial sums is increasing and
bounded above, whence both these sequences converge; their
limits must be the same since s2n+1 − s2n = a2n+1 → 0 as k → ∞. In

particular the alternating harmonic series
∑∞

k=1
(−1)k+1

k
converges; the convergence is conditional since the harmonic
series diverges.
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In practice, conditional convergence is very slow convergence;
one has to take many terms to get even a rough approximation
to the sum of the series. For this reason I will mostly concentrate
on criteria for absolute convergence in the next week or so; later
I will illustrate a further paradoxical property of conditional
convergence. First I however I want to give a very simple
necessary condition for convergence of an arbitrary series.

nth Term Test: Proposition 9.5, p. 231
If
∑

i ai converges, then ai → 0 as i → ∞; thus if ai ̸→ 0 as i → ∞,
then

∑
i ai diverges.

Indeed, if sn is the nth partial sum, then sn, sn−1 have a common
limit S as n → ∞, whence an = sn − sn−1 → L − L = 0 as n → ∞.
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Geometric series are the most useful ones for comparison
purposes. A basic result is

Ratio Test: Corollary 9.21, p. 239

Let
∑

n an be a series such that |an+1|
|an| → L as n → ∞. Then

∑
n an

converges absolutely is L < 1 and diverges absolutely (i.e. does
not converge absolutely) if L > 1.
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Proof.

If L < 1 then choose M < 1 with L < M; then one has |an+1|
|an| < M for

n ≥ N, say, so that by induction |aN+k | ≤ Mk |aN | for all k ≥ 0. Then∑∞
n=N |an| converges by comparison with the convergent series∑∞
k=0 Mk |aN |, whence

∑
n |an| does also. If L > 1 then choose

M > 1 with L > M. Then |an+1| ≥ M|an| for n ≥ N, whence in
particular |an+1| > |an| and an ̸→ 0 as n → ∞.
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More generally, the proof shows that
∑

|an| converges if
lim

|an+1|
|an| < 1, while this series diverges if lim |an+1|

|an| > 1. Unfortunately,
the case L = 1 provides no useful information; the harmonic
series and the p-series with p = 2 both have L = 1. A large
number of theorems were proved in the 19th century precisely to
treat the case L = 1.
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Example

Recall my earlier proof that limn→∞(1 + 1
n)

n exists and equals the
sum of the convergent series

∑∞
n=0

1
n! . A similar argument shows

that the series
∑∞

n=0
xn

n! converges for all x ∈ R (by the ratio test)
and equals the convergent limit limn→∞(1 + x

n)
n. I will later show

that the sum f (x) of this series satisfies the multiplication rule
f (x)f (y) = f (x + y).
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