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I have motivated my discussion of sequences in the course by
the Least Upper Bound Property, using this property to show that
every decimal expansion 0.d1d2 . . . represents a unique real
number. I now want to vastly generalize this example, presenting
a large family of examples of sequences that are guaranteed to
converge even if their limits cannot be identified. To this end,
define a sequence sn to be monotone if it is either increasing or
decreasing, that is, either sn ≤ sn+1 for all n or sn ≥ sn+1 for all n.
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The Monotone Convergence Theorem (Theorem 2.25 on p.
38)
A monotone sequence sn converges if and only if it is bounded
in the sense that there is b ∈ R with |sn| ≤ b for all indices n.
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Proof.
If sn is increasing and bounded, then the set {sn} of all terms of
the sequence has a supremum L. Given ϵ > 0, choose an index
N with aN > Lϵ; then one has L − ϵ < sn ≤ L for all n ≥ N, so that sn
converges to L, as desired. Similarly, if sn is decreasing and
bounded, then it converges to the infimum of {sn}. Finally, any
convergent sequence sn must be bounded; if its limit is L then
one has |sn − L| < 1 for n ≥ N, say, whence |sn| < |L|+ 1 for all
n ≥ N, whence |an| < M for all indices n, where M is the
maximum of |L|+ 1 and the first N − 1 absolute values |si | of the
terms with i < N.

Note that the same proof works if one only has an ≤ an+1, or
an ≥ an+1, for n ≥ N, where N is a fixed index. It is often
convenient in practice to apply this weaker hypothesis.
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Corollary: Theorem 9.7, p. 232
Any series

∑∞
n=1 an with nonnegative terms an converges if and

only if its partial sums are bounded.

Proof.
The hypothesis guarantees that the nth partial sum sn of the
series satisfies sn ≤ sn+1, so that sn converges if and only if it is
bounded.
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Examples

The series S =
∑∞

i=0
1
i! converges (where I recall that 0! = 1).

Indeed, one has i! ≥ 2i−1 for i ≥ 1, whence a typical partial sum∑m
i=0

1
i! of this series is bounded by 1 + 1 +

∑m−1
i=1 2−(m−1), and you

already know that the set of partial sums of this last type is
bounded. From this it follows that the sequence an = (1 + 1

n)
n

converges. Here (1 + 1
n)

n =
∑n

i=0(1 − 1
n) · · · (1 − i−1

n ) 1
i! , where the

product (1 − 1
n) · · · (1 − i−1

n ) is taken to equal 1 if either i = 0 or
i = 1. Every term in this sum becomes larger and one picks up an
extra term if n is replaced by n + 1, whence an ≤ an+1; moreover,
the sum shows that the an are bounded since the partial sums of
S are. In fact, the value of S is the same as L = limn→∞ an (both
are equal to e, the base of natural logarithms).

Lecture 4-7: Sequences and the Least Upper Bound PropertyApril 7, 2023 6 / 1



Example
The harmonic series H =

∑∞
i=1(1/i) diverges. Writing s2n for the

2nth partial sum of this series, one finds that
s2n+1 = s2n +

∑2n+1

i=2n+1(1/i) ≥
∑2n+1

i=2n+1(1/2n+1) = s2n + (1/2), so by
induction s2n ≥ (n + 1)/2 and the partial sums of H are not
bounded.

See Example 2.27 on p. 39 of the text. Note that the series
Hp =

∑∞
i=1(1/np) also diverges whenever p < 1, since each of its

partial sums is larger than the corresponding partial sum of the
harmonic series. I will show later that the series for Hp converges
whenever p > 1.
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I have shown that any bounded monotone sequence
converges; but on the other hand many bounded
non-monotone sequences (e.g. an = (−1)n) fail to converge.
There is however a very useful way to extract a convergent
sequence out of any bounded sequence, whether or not that
sequence itself converges. To do this I need a definition.

Definition (p. 43)
Given a sequence an I say that another sequence bk is a
subsequence of an if there is a strictly increasing sequence
n1,n2, . . . of positive integers such that bk = ank .

Then I have

Theorem 2.32, text, p. 45
Every sequence an has a monotone subsequence.
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Proof.
Call an index n a peak index if am ≤ an for all m ≥ n. Then I
consider two cases. If there are infinitely many peak indices, say
n1,n2, . . . with n1 < n2 < . . ., then the definition of peak shows
that the subsequence bk = ank is decreasing. If instead there are
only finitely many peak indices, then there must be a largest one
N (or set N = 0 if there are no peak indices at all). Set n1 = N + 1;
if n1, . . . ,nk have been defined so that an1 < · · · < ank , then since
nk > N there must be an index m > nk with am > ank ; set
nk+1 = m. In this inductive way we have defined indices nk for all
k such that bk = ank is an increasing subsequence of an.

As an immediate corollary every bounded sequence has a
convergent subsequence (Theorem 2.33 on p. 45 of the text),
since a monotone subsequence of a bounded sequence is
again bounded and so must converge.
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We also have

Proposition 2.30, p. 44
Any subsequence of a convergent sequence an converges to
the same limit.

Indeed, if an converges to L and bk is a subsequence then for
any ϵ > 0 there is N with k ≥ N implies |ak − L| < ϵ. But then k ≥ N
also implies that bk = ank , necessarily having an index nk ≥ k ,
also satisfies |bk − L| < ϵ, as desired.
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Definition, text, p. 37
A subset S of R is closed if the limit L of any convergent
sequence sn of points in S also lies in S.

This definition of closed set agrees with the one given in the first
week of class, since given any convergent sequence sn there is
a monotone subsequence tn that converges to the same limit.
Thus if a subset S of R is closed in the sense that it contains the
supremum and infinimum of any bounded subset then it must
contain the supremum or infimum of the subsequence tn, which
is the same as the limit of both tn and sn. Conversely, if S contains
the limit of any convergent sequence of numbers in it and B ⊂ S
is bounded above, with supremum b, then for every n we can
choose sn ∈ B with b ≥ sn > b − (1/n). The sequence sn must then
converge to b, whence b ∈ S, as desired. Similarly S must also
contain the infimum of any of its subsets that is bounded below.
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