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Last week I showed that in order to make sense of an infinite sum∑∞
i=1 ai it is necessary to consider the partial sums sn =

∑n
i=1 ai ,

which from a succession s1, s2, . . . of numbers. If this succession
“crunches down” on some number s in some sense, then that
number s deserves to be called the value of the sum

∑∞
i=1 ai .
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But now what does it mean for succession of numbers to crunch
down on another one? To answer this I first define the notion of
succession formally.
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Definition, p. 23, text
A sequence (of real numbers) is a function s from the natural
numbers to the real numbers. I write sn rather than a(n) for the
value of s at n and denote the entire sequence by {sn}, or just sn.

One often gives a formula for an, either directly as a function of n
or inductively; for example, there is the sequence of reciprocals
given by an = 1/n and the famous Fibonacci sequence given by
s1 = s2 = 1, sn = sn1 + sn−2 for n ≥ 3. Although there is in fact a
formula for sn in terms of n in this last example, it is important to
realize that such a formula is not actually necessary to define the
sequence (sn); for this the inductive recipe sn = sn−1 + sn−2 is
enough.
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Definition, p. 25, text
An infinite series is an expression of the form

∑∞
i=1 ai , where the ai

are real; sometimes I allow the index of summation to start at a
different number than 1. I will identify any such series with its
sequence of partial sums sn, where sn =

∑n
i=1 ai .
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Definition, p. 26
I say that the sequence {sn} converges to the limit L if for all ϵ > 0
there is N ∈ N such that |sn − L| < ϵ for all n ≥ N. I write
lim sn = limn→∞ sn = L or sn → L (and say sn approaches L) as
n → ∞ in this situation. I can also say that {sn} converges without
specifying its limit.

For example, the sequence with an = (−1)n/n converges to 0:
given ϵ > 0, choose N > 1/ϵ by the Archimedean Property; then
| (−1)n

n | = 1
n ≤ 1

N < ϵ for n ≥ N, whence |an| < ϵ for n ≥ N, as
desired. Note that 0 is neither the supremum nor the infimum of
the set {an} of terms of the sequence in this case.
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On the other hand, a shown in the text, the sequence {(−1)n}
does not converge (one says it diverges). Indeed, suppose that
this sequence converges to a. There would then have to be
some N such that |(−1)n − a| < 1

2 for all n ≥ N. If n is odd, this
implies that | − 1 − a| < 1

2 ; if n is even, this implies that
|1 − a| = |a − 1| < 1

2 . Applying the Triangle Inequality I get
| − 1 − 1| = 2 < 1

2 + 1
2 = 1, which is absurd. This is the first

application of the Triangle Inequality in this course.
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Often one can understand a complicated sequence by
comparing it to a simpler one. Thus for example the text shows in
Example 2.8 on p. 27 that limn→∞( 2

n2 + 4
n + 3) = 3. To see this

observe that 2
n2 ≤ 2

n for n ≥ 1, whence 0 ≤ 2
n2 + 4

n ≤ 6
n and

| 2
n2 +

4
n + 3 − 3| ≤ 6

n . Given ϵ > 0, if we choose N > 6
ϵ then 6

n < ϵ for
n ≥ N whence the absolute value is less than ϵ, as desired.
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Sometimes clever algebraic manipulations make it easy to
evaluate certain limits. Thus for instance if an =

√
n + 1 −

√
n then

we can rewrite an as 1√
n+1+

√
n
< 1

2
√

n
, whence it easily follows

that an → 0 as n → ∞. On the other hand, consider the series∑∞
i=1(

√
i + 1 −

√
i). This is a so-called telescoping series; its nth

partial sum sn =
∑n

i=1(
√

i + 1 −
√

i) =
√

n + 1 −
√

1. Clearly
sn =

√
n + 1 − 1 → ∞ in the sense that for any M there is N such

that sn > M for n ≥ N. The same argument shows that even if we
begin the series at a different index, say at i = m, then the nth
partial sum sn,m of this series still approaches ∞ as n does.
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This example has the following remarkable consequence. Given
ϵ > 0 choose N large enough that an < ϵ for n ≥ N. The partial
sums of

∑∞
i=N ai approach ∞ as n does, so given any positive

real number r there is a smallest partial sum sn,N =
√

n + 1 −
√

N
greater than r . But then sn−1,N =

√
n −

√
N < r , whence√

n + 1 −
√

N lies between r and r + ϵ. I conclude that the set S of
differences

√
m −

√
n of square roots of positive integers m,n for

m > n is dense in R+, whence by interchanging m and n we see
that the set S′ of differences

√
m −

√
n of square roots of arbitrary

positive integers is dense in R. One might well have guessed that
the set S′ is discrete; but in fact, like Q, it is dense in R.
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The Binomial Theorem implies that (1 + r)n ≥ 1 + nr for any r > 0
and positive integer n, whence (1 + r)n → ∞ as n → ∞; thus
αn → ∞ if α > 1. If instead 0 < α < 1, then (1/α) > 1, so
(1/α)n → ∞ and αn → 0 as n → ∞. I will derive consequences of
this calculation for certain infinite series next time.
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