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This lecture will be entirely devoted to review for the midterm on
Friday. I begin with the fundamental property that distinguished
the real numbers from the rational ones and makes it possible to
do calculus on the former, namely the Least Upper Bound
Property that every nonempty set S of real numbers that is
bounded above has a least upper bound (or supremum);
likewise every nonempty set S of real numbers that is bounded
below has a greatest lower bound (or infimum).
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I constructed the real number r as a so-called cut Cr of rational
numbers, more precisely taking Cr to consist of the rational
numbers strictly less than r . Then r ≤ s if and only if Cr ⊆ Cs. The
cut C corresponding to any nonempty set S of real numbers that
is bounded above is simply the union of the cuts Cs
corresponding to each element s of S, so that the Least Upper
Bound Property is satisfied.
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Having constructed the real numbers, I turned to sequences
and series. A sequence s = sn is just a choice of real numbers sn,
one for every n ∈ N. A series

∑∞
i=1 ti is just by definition the

sequence sn of its partial sums, where sn =
∑n

i=1 ti . The sequence
sn converges to the (finite) limit L if for every ε > 0 there is an
index N such that |sn − L| < ε whenever n ≥ N; a series

∑∞
i=1 ti thus

converges to its finite sum S if and only if for every ε > 0 there is
an index N such that |

∑n
i=1 ti − S| < ε whenever n ≥ N. Be careful

not to confuse a sequence (ti) with the series
∑∞

i=1 ti whose
terms are the ti . For example, if ti = 1/i, then ti → 0 as i →∞, but
the series

∑∞
i=1 ti diverges to∞; that is, its partial sums get

arbitrarily large.
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The Monotone Convergence Theorem guarantees that a
monotone sequence (tn), that is, one such that either tn ≤ tn+1
for all n or tn ≥ tn+1 for all n, converges if and only if it is bounded,
so that there is M ∈ R with |tn| < M for all n. As an immediate
consequence, a series

∑∞
i=1 ai with ai ≥ 0 for all i converges if

and only if its partial sums are bounded. A direct calculation
shows that the geometric series

∑∞
i=0 r i converges if and only if

|r | < 1; its sum in this case is 1
1−r . On the other hand, the

harmonic series
∑∞

i=1
1
i has unbounded partial sums and

accordingly diverges.
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Any sequence an always has a monotone subsequence
bk = ank (so that the indices ni satisfy n1 < n2 < . . .). In particular,
if ak is bounded, so that the ak all lie in a closed bounded
interval [a,b], then ak has a subsequence converging to some
c ∈ [a,b]; we express this property by saying that the closed
interval [a,b] is sequentially compact.

Lecture 4-19: Review April 19, 2023 6 / 13



Turning now to limits of real-valued functions of a real variable,
given a function f defined on an open interval (a − d,a + d) for
some d > 0 except possibly at the point a, we say that
limx→a f (x) = L if for all ε > 0 there is δ > 0 such that 0 < |x − a| < δ
implies that |f (x)− L| < ε (so that in particular f (x) is defined if
0 < |x − a| < δ). We say that f (x) is continuous at a if f (a) is
defined and limx→a f (x) = f (a), so that for all ε > 0 there is δ > 0
such that if 0 ≤ |x − a| < δ implies |f (x)− f (a)| < ε; note that there
is no need to exclude the case x = a from this definition. If f is
continuous at a and defined at all points of a sequence (an)
converging to a, then f (a) = f (limn→∞ an) = limn→∞ f (an), so that
applying f commutes with taking the limit of a sequence
converging to a.
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A function defined on an open interval (a,b) is continuous
(without qualification) if it is continuous at all points of (a,b). If
instead f is defined on a closed interval [a,b] then it is standard
to weaken the definition of continuity slightly at the endpoints,
saying that f is continuous at a if limx→a+ = f (a) and similarly that
f is continuous at b if limx→b− = f (b) (thus allowing for the
possibility that f is not defined at any point to the left of a or the
right of b). Then f is continuous on [a,b] if and only if it is
continuous at all points of this interval.
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The standard limit laws apply to both sequences and functions:
thus the limit of a sum, difference, or product of functions at a
point is the sum, difference, or product of their limits at that point.
The same holds for quotients, provided that the denominator
does not have the limit 0 at the point in question. We can also
take limits of functions on sequences, with one proviso: if
limn→∞ an = a and limx→a = L, then limn→∞ f (an) = L, provided
that an 6= a for all a. We have to impose this last condition
because saying that limx→a f (x) = L says nothing at all about
f (a) itself. For continuity this extra condition disappears: if f is
continuous at a,an → a and f (an) is defined for all n, then
f (an)→ f (a).
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Similarly, we have the chain rule for continuous functions: if g is
continuous at a and f is continuous at g(a) then the composite
function f (g) is continuous at a.
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Recall now the three three key properties of continuous
functions:

Boundedness Property: any continuous function on a closed
bounded interval [a,b] is bounded.
Extreme Value Property: any such function on [a,b] has both
a maximum and a minimum there (not just a supremum and
infimum).
Intermediate Value Property; any such function f on [a,b]
takes on every value between f (a) and f (b).
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The last of these properties is often applied to differences f −g of
continuous functions rather than to f and g separately. All three
properties, taken together, say that the image f [a,b] of a closed
bounded interval [a,b] under a continuous function f is another
closed bounded interval [c,d].
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I will conclude with some remarks about how functions can fail
to be continuous. First of all, it is easy for a function f on an
interval [a,b] not to be continuous at any point of [a,b]: just take
f (x) = 0 if x ∈ Q, f (x) = 1 if x /∈ Q. More interestingly, it is possible
for f to be discontinuous at all rational x yet continuous at all
irrational x : define f on [1, 2] by decreeing that f (x) = 0 if x /∈ Q
while f (x) = 1/n if x = m/n ∈ Q in lowest terms, with m,n > 0. This
is Exercise 9 on p. 74 in the study problems, which I urge you to
think about carefully. Interestingly, the opposite phenomenon is
impossible: there is no function continuous at all x ∈ Q but
discontinuous at all x /∈ Q.
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Finally, some logistics: you will do all your work on the test paper
and are permitted one sheet (front and back) of handwritten
notes.
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