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Just one more property of continuous functions to discuss before
we get to derivatives, the topic of Chapter 4 in the text.

Definition, p. 66, text

We say that the function f defined on a set S is uniformly
continuous on S if for every € > 0 there is 6 > 0 such that
whenever x,y € Sand |x — y| < é§ we have |f(x) — f(y)| < e.
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The key difference between this property and ordinary continuity
is that, given € > 0 the same § has to work for all x, y € S; we are
not allowed to use different ¢ for different x. For example, the
function f(x) = 1/x is continuous but not uniformly continuous on
the open interval (O, 1): taking e = 1, we have

f(1/n) =n,f(1/2n) = 2nfor all n € N. If any ¢ > O satisfied the
above definition for this value of ¢, then we could choose n with
(1/2n) < 6, and then the values x = 1/n,y = 1/2n would
contradict this definition. This is Example 3.16 on p. 67 of the text.
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Once again it furns out that restricting to functions defined on
closed bounded intervals fixes the problem.

Theorem 3.17, p. 68

Any function f defined and confinuous on a closed bounded
interval [a, b] is uniformly continuous there.
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Proof.

Given e > 0, | will show that the choice § = 1/n must satisfy the
definition for some choice of n € N. Otherwise for each such n
we would have x, n, y, € [a, b] with

IXn — yYn| < 1/n,|f(Xn) — f(¥n)| > €. Then some subsequence xp, of
Xn would converge to some x € [a, b] and the condition

IXn — ¥n| < 1/nforces the corresponding subsequence yp, of y, to
converge fo the same number x. But then f(xn,, f(yn,) converge
to the same limit f(x), contradicting |f(xn) — f(yn)| > eforalln. [

v
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We won’t actually have any occasion to use uniform conftinuity
in this course until much later, but it is needed in the theory of
infegration, covered in Chapter 6 of the text, and is useful in
proving some advanced theorems in analysis. The notion of
uniformity will occur in the context of sequences and series and
will play a very important role in Chapter 9.
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Now we turn to the basic definition of Chapter 4.

Definition, p. 88

Given a function f defined on an open interval (a, b) and

X0 € (a,b) we say that f is differentiable at xy if limy.,x, {X)=1C0)
exists. The value of this limit is denoted f'(xg). If f is defined on a
closed interval [a, b] then we say that f is right differentiable at
x = aif the one-sided limit lim,_, 4+ M exists; similarly f is left

differentiable at x = b if lim,_, - w exists.

|
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If f is differentiable at xg then it is also confinuous there
(Proposition 4.5, p. 91), since then

im0 (F(X) = F(X0)) = limx s, D (x — x0) = F(x9) -0 = 0. A
simple application of the difference of powers formula

X" — X = (X — %) (X" + X" 2% + ...+ xJ~ 1) on p. 90 shows that
the power function f(x) = x" is differentiable everywhere and
has derivative f/(x) = nx"~1,if n € N. In fact a slightly more
elaborate argument shows for any r € R that if f(x) = x’ for x > 0
then f/(x) = rx"~! for x > 0.

On the other hand, the function g(x) = |x| fails to be

differentiable af x = 0, since the left-hand limit lim,_,q- % M=

fails fo coincide with the right-hand limit lim,_,q+ % L
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The limit laws for addition and subtraction show at once that the
function f + g is differentiable at any point xg if f, g are
differentiable there and

(f+9) (x0) = f'(x0) + 9' (%), (f — 9)'(X0) = F'(X0) — g'(X0). The

f f f f
calculation 1X90I=TbedC) _ IGK)-TLe)al) 4 [a)gt~Tbalole)

shows that fg is d|fferenT|obIe at xg whenever f and g are and
(fa) (xg) = f'(x0)9(Xo) + f(X0)9'(Xo). Similarly we have the quotient
rule that 5 is differentiable at x whenever n, d are and

d(xg) # 0: then (5)(x) = d(Xo)”’(Xg)(XDr)l(Xg)d’(xo)
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The Chain Rule, stated on p. 99 of the text, is a bit trickier. Let f
be differentiable at g(xg) and g be differentiable at xy (so that f
is defined in some open interval containing g(xg) while g is
defined in some open interval containing xg). Then the
composite function f(g) is differentiable at x; and

f(9) (x0) = F(9(X0))d (Xg). To prove this we must study the limit
limy_x, %ﬁgg(’@)). There are two cases. If g'(xg) # 0 then we
must have g(x) # g(Xp) for all x in some interval (xg — a, Xy + 9)

about xg. For such x we may then write

fot)=r(g00) _ f9(=Hg)) 9I=0L6) for & (x5 — a1, X + ) ANd

the result follows at once by taking limits.
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If @'(Xp) =0 then given e > 0 there is § > 0 such that we sfill have
HI=HACa)  £1(g(xp)gf (x0)| = [@XD=ECO) | < ¢ whenever

|x — xg| < d and g(x) # g(Xp). using the continuity of f at g(xg)
and g at x; but if g(x) = g(Xo). then trivially LID=TEC) — @ for

X # Xo. Thus f(9)'(xg) = 0 = f(9(x0))9'(Xp) in this case too.
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Example

Set f(x) = x%sin(1/x) for x # 0, f(Q) = 0. Combining the product
and chain rules, we get that f'(x) = 2xsin(1/x) — cos(1/x) for

x # 0, while a direct calculation using the definition of limit shows
that (0) = limy_,g 23N — 0, since X = x has the limit 0 as

x — 0, while sin(1/x) is bounded between 1 and -1 for all x (we
are applying the squeeze limit law here). This example is
interesting because f’ always exists but is discontinuous at O;
since cos(1/x) has no limit as x — 0, the limit limy_,q f'(x) does not
even exist. We will return to this example later.
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