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Last time I showed that a continuous function on a closed
bounded interval [a,b] takes on a minimum and maximum value
there; now I will show it takes on every value in between as well.

Intermediate Value Theorem (3.11 in the text, p. 62)
Let f be continuous on [a,b] and let c be a number between
f (a) and f (b). Then there is y ∈ [a,b] with f (y) = c.
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Proof.
For definiteness assume that f (a) < c < f (b); the other case is
similar. Define two sequences (an), (bn) inductively, as follows.
Set a0 = a,b0 = b, so that f (a0) < c < f (b0) and b0 − a0 = b − a.
If an,bn ∈ [a,b] have been defined so that f (an) ≤ c ≤ (bn) and
bn − an = b−a

2n , then let d = an+bn
2 . If f (d) ≥ c, then set

an+1 = an,bn = d; if f (d) < c, then set an+1 = d,bn+1 = bn. One
easily checks that f (an+1) ≤ c ≤ f (bn+1 and bn+1 − an+1 = b−a

2n+1 ,
as desired. Now the sequence an is increasing .and bounded
above; likewise bn is decreasing and bounded below. Letting
y , z be the respective limits of an,bn, we have y = z since
bn − an → 0 as n→∞. Then f (y) is the common limit of the f (an)
and f (bn), whence it must be both at least and at most c.
Hence f (y) = f (z) = c, as desired.
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As an immediate corollary I get

Theorem 3.14, text, p. 65
If f is continuous on [a,b], then the range {f (x) : x ∈ [a,b]} of f is
another closed bounded interval [m,M], where m,M are the
minimum and maximum of f on [a,b], respectively.
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Example
Now I can massively generalize the result of an earlier homework
problem. Given any positive integer n and α > 0 I know that
(1 + α)n ≥ nα ≥ α, whence the continuous function f (x) = xn

takes values less than α and other values greater than α,
whence it must take the value α as well. Then f is an increasing
function, so there is in fact a unique y ∈ R+ with yn = α; of course
we call y the nth root of α and denote it by α

1
n . Similarly, given

any rational number m
n and α > 0 the power α

m
n = (α

1
n )m is well

defined. Finally, if α > 1 and r ∈ R then I define αr to be the
supremum of all powers αq, where q runs through the rational
numbers less than r . If 0 < α < 1 then αr is defined to be the
reciprocal 1

βr , where β = 1
α .
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This last example can itself be massively generalized.

Theorem
If f is continuous and strictly increasing on [0,∞) such that
f (x)→∞ as x →∞, then given any c ≥ f (0) there is a unique
y ≥ 0 with f (y) = c.

The corresponding result also holds for strictly decreasing
functions on [0,∞) such that f (x)→ −∞ as x →∞. Moreover one
also has

Theorem
Any continuous one-to-one function f on a closed bounded
interval must be either strictly increasing or strictly decreasing on
that interval.
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Proof.
Otherwise there are x , y , z in the interval with x < y < z and
either f (x) < f (y) > f (z) or f (x) > f (y) < f (z). In either case there
is some value c between f (x) and f (y) such that f takes the
value c twice, once between x and y , and then again between
y and z.
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Using this last result I can construct new continuous functions
from old ones.

Inverse Function Theorem for continuity (Theorem 3.29, p.
78)
Let f be continuous and one-to-one on a closed bounded
interval [a,b], with range another closed interval [c,d]. Then the
inverse function g of f , sending f (x) back to x for all x ∈ [a,b], is
continuous from [c,d] to [a,b].
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Proof.
Let x ∈ [a,b] and assume for convenience assume that
a < x < b; the cases x = a and x = b are similar and easier. I will
show that g is continuous at y = f (x). Given ε > 0 small enough
that x − ε, x + ε both lie in [a,b], let
y1 = f (x − ε), y = f (x), y2 = f (x + ε). Since f is strictly monotonic
between x − ε and x + ε it follows that if
δ = min(|y2 − f (x)|, |f (x)− y1|) then any z with |z − y)| < δ is f (w)
for a unique w ∈ (x − ε, x + ε), whence |g(z)− x | < ε if |z − y | < δ,
forcing g to be continuous at y , as desired.
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In particular for any r ∈ Q the power function fr(x) = x r is
continuous on (0,∞), since the nth root function is continuous on
this interval for any n ∈ N and fr is the composite of this function
and a power function with integral exponent. This function is also
continuous at x = 0 whenever it is defined there.

I can also use the Intermediate Value Theorem to show that
some rather exotic equations have solutions (though I cannot
construct the solutions explicitly).

Example

The equation cos x = x2 has a solution lying in the open interval
(0, 1). This follows since f (x) = cos x − x2 is continuous on [0, 1],
takes a positive value at 0, and a negative one at 1; hence it
takes the value 0 at some point of (0, 1).
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I now shift gears, defining limits of functions in more general
contexts. First, given a function f defined on an infinite open
interval (a,∞) I define limx→∞ f (x) exactly as for sequences,
declaring that limx→∞ f (x) = L if for every ε > 0 there is M ∈ R with
|f (x)− L| < ε for x > M, and that f (x)→∞ as x →∞ if for every
N ∈ R there is M ∈ R with f (x) > N for x > M. The arithmetic and
squeeze limit laws then carry over to such limits; for example,
since 1/x ,−1/x → 0 as x →∞ I have (sin x/x)→ 0 as x →∞, since
sin x/x is trapped between −1/x and 1/x . Any ratio p(x)/q(x) of
polynomials approaches the same value as x →∞ as the ratio
anxn

bmxm of the leading terms anxn,bmxm of p(x),q(x) respectively,
since the quotients p(x)/xn,qx/xm approach the coefficients
an,bm of xn, xm in p(x),q(x), as x →∞.
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If a function f defined and continuous at all points of an open
interval (a − d,a + d) except for a itself has a limit L as x → a,
then there is a unique way to define f (a) so as to make f
continuous on the entire interval, namely by taking f (a) = L. On
the other hand, if a function f fails to have a limit as x → a, then
there is no way to define f at a so as to make f continuous there.
This occurs, for example, with the function f (x) = sin(1/x), say on
the interval (−1, 1). Here f ( 2

(4n+1)π ) = 1, f ( 2
(4n+3)π ) = −1 for all

n ∈ N, whence limx→0 f (x) does not exist (applying the sequence
definition of limit, for example). We cannot define this f at 0 to
make it continuous there. This example will pop up several more
times later in the course.
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In the next chapter we will define derivatives of differentiable
functions; it turns out that any continuous function is the
derivative of another one, but the converse is false: derivatives
of functions need not be continuous. We will however show that
any derivative satisfies one of the key properties of continuous
functions described above, namely the Intermediate Value
Property. Both the Extreme Value Property and the Boundedness
Property can fail for derivatives, even on closed bounded
intervals.

Lecture 4-14: Properties of continuous functions and limits April 14, 2023 13 / 1


