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Now I can finally start to talk about real-valued functions of a
real variable, the bread and butter of calculus. Let f be such a
function and (a − d,a + d) an open interval about a ∈ R such
that f is defined on all points of this interval with the possible
exception of a itself. The basic definition is

Definition of limit of function; compare with p. 82 in the text
I say that limx→a f (x) = L if for every ε > 0 there is δ > 0 such that
whenever 0 < |x − a| < δ I have |f (x)− L| < ε. I call L the limit of f
at a and I write f (x)→ L as x → a.

The definition is formally quite similar to that of a limit of a
sequence, but there are several special features:
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the real parameter δ replaces the index parameter N;
the limit takes place at a ∈ R, rather than at infinity as for a
sequence;
it does not matter what f (a) is, or even whether it is defined,
thanks to the condition 0 < |x − a| < δ in the definition.

Example

Let f (x) = x2−1
x−1 , so that f (x) = x + 1 if x 6= 1, while f (1) is

undefined. Here limx→1 f (x) = 2, since for every ε > 0 I can take
δ = ε, and then 0 < |x − 1| < δ implies that |f (x)− 2| = |x − 1| < ε,
as desired. It does not matter that f is undefined at x = 1. This
calculation turns out to show that the function f (x) = x2 is
differentiable at x = 1 and its derivative there is 2. This is Example
3.34 in the text (p. 82).
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The most important special case of the limit of a function f at a
point a occurs when this limit equals the value f (a) of f at a (so
that in particular f (a) is defined).

Definition of continuity at a point (p. 53, text)
We say that the function f defined in some open interval
(a − d,a + d) is continuous at a if limx→a f (x) = f (a), or
equivalently if for every ε > 0 there is δ > 0 such that |x − a| < δ
implies |f (x)− f (a)| < ε (note that the hypothesis is |x − a| < δ
rather than 0 < |x − a| < δ in this case). We say that f is
continuous if it is continuous at all points in its domain.

Lecture 4-12: Limits of functions and continuity April 12, 2023 4 / 1



The limit laws for sequences carry over to functions and the
proofs are the same apart from minor changes in notation. Thus
if f (x)→ L,g(x)→ M, as x → a, then one has
f (x) + g(x)→ L + M, f (x)− g(x)→ L−M, f (x)g(x)→ LM, as x → a.
Also f (x)/g(x)→ L/M as x → a, provided that M 6= 0.
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The above definitions of continuity and limit of a function at a
point, called the ε− δ criteria on p. 70 of the text, are the
standard ones, used in most texts. This text defines the limit of a
function at a point on p. 82 using sequences: given f defined on
an interval (a − d,a + d) for some d > 0 except possibly at the
point a, one says that limx→a f (x) = L if given any sequence an
converging to a with an 6= a and f (an) defined for all n, the
sequence f (an) converges to L. Nevertheless, the two definitions
are equivalent.
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Theorem
We have limx→a f (x) = L by the ε− δ definition if and only if
limx→a f (x) = L by the sequence definition. In particular, f is
continuous at a by the ε− δ definition.

Proof.
If the ε− δ definition holds and an is a sequence with f (an)
defined for all n,an 6= a, and an → a, then let ε > 0. Then there is
an index N such that n ≥ N implies 0 < |an − a| < δ, which in turn
implies that |f (an)− L| < ε, forcing f (an)→ L. Conversely, if the
sequence definition holds, then suppose for a contradiction that
for some given ε > 0 and any nonnegative integer n, the choice
δ = 1/n never satisfies the ε− δ definition, so that there is an with
0 < an − a < 1/n, f (an) is defined, and |f (an)− f (a)| > ε. Then
clearly an → a as n→∞ but f (an) 6→ L, contradicting the
sequence definition.
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There are two extensions of the definition of a limit of a function
at a point which arise often enough to be worth mentioning
explicitly. Given a function f defined on an open interval
(a,a + d) for some d > 0 (but not necessarily at any point to the
left of a), suppose that for any ε > 0 there is δ > 0 such that
0 < x − a < δ implies |f (x)− L| < ε. Then we write limx→a+ f (x) = L
and say that f has the right-hand limit of L as x approaches a
(from above). We define the condition limx→a− f (x) = L similarly, if
f is defined on some open interval (a − d,a), but not necessarily
at a or any point to the right of it, saying that limx→a− = L if for
every ε > 0 there is δ > 0 such that 0 < a − x < δ implies that
|f (x)− L| < ε and calling L the left-hand limit of f at a. Clearly f
has the limit L at a if and only if it has L as both left- and
right-hand limit at a.
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There is a basic property of continuous functions most easily
proved using the ε− δ definition; this is

Continuity of (or chain rule for) composite functions:
Theorem 3.6, p. 56
If f (x) is continuous at a and g(x) is continuous at f (a), then the
composite function g(f (x)) is continuous at a.

Proof.
Given ε > 0 choose δ′ > 0 with |g(y)− g(f (a))| < ε whenever
|y − f (a)| < δ1. Then choose δ > 0 with |f (x)− f (a)| < δ1 whenever
|x − a| < δ. Then |x − a| < δ implies |g(f (x)− g(f (a))| < ε, as
desired.

Lecture 4-12: Limits of functions and continuity April 12, 2023 9 / 1



Reverting to the sequence definition I can show:

Extreme Value Theorem, p. 60
A continuous function f on a closed bounded interval [a,b] has
a maximum and minimum value.

Thus any max-min problem from first-year calculus must have a
solution.
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Proof.
I will first show that any such f is bounded above on [a,b].
Otherwise for every n ∈ N there would be xn ∈ [a,b] with
f (xn) > n. The sequence xn would have a convergent monotone
subsequence yk , where yk = xnk and nk ≥ k , say with
yn → c ∈ [a,b]; but it is clear that the sequence (f (yn)) cannot
converge, violating the sequence definition. Similarly f must be
bounded below on [a,b]. Now let M be the least upper bound
of the set of values f (x) as x runs over [a,b]. For each n choose
xn ∈ [a,b] with f (xn) > M − 1

n . As before some subsequence yk of
points in [a,b] converges to some c ∈ [a,b], and now it is clear
that f (c) = limk→∞ f (yk) = M (again because if yk = xnk , then
nk ≥ k). Similarly f must take on the infimum of the set of its
values on [a,b], which is also its minimum.
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