Lecture 3-29: The real numbers, continued

March 29, 2023

Lecture 3-29: The real numbers, continuec

March 29, 2023 1 / 1

∢ ≣⇒

I will begin by sketching the construction of the real numbers, as given in a number of books (but not the Fitzpatrick text), as well as a number of online sources. This will give a very clear indication of how one uses the set of rational numbers itself to plug up its own holes. The basic idea is to construct any real number r as the set of C_r of rational numbers q with q < r, being careful *not* to consider at the same time the set of rational numbers q with $q \leq r$, as then these two possibly different sets of rational numbers.

More precisely, I call a set S of rational numbers a cut if it is nonempty, bounded above, has no greatest element, and contains any rational number x < y whenever it contains y. Then the real numbers (by definition) are exactly the cuts. Given cutes C_x , C_y defining the respective numbers x, y, the condition for x to be less than or equal to y is clearly the set-theoretic condition that $C_x \subseteq C_y$. Then the least upper bound of a nonempty set $\{C_i : i \in I\}$ of cuts that is bounded above (so that there is $r \in \mathbb{Q}$ with $r \notin C_i$ for any i) is just the union C of all the C_i , which clearly satisfies the definition of cut. This very simple definition thus yields the Least Upper Bound Property as a consequence.

Next I have to define the arithmetic operations on these cuts so as to satisfy the axioms of a field. For addition this is straightforward: given two cuts C, D, define their sum C + D to consist of all sums c + d as c runs over C and d runs over D. Taking negatives is already a little tricky; since x < y if and only if -y < -x, we define the negative -C of a cut C by first taking all -d as d runs over the rational numbers not in C, and then removing the largest element if there is one. Thus the cut defining -1 consists of all rational numbers r with r < -1, with -1removed, so that in the end it consists exactly of the rationals r with r < -1. By contrast, the cut defining $-\sqrt{2}$ consists exactly of the negatives -r of all rational numbers $r > \sqrt{2}$; since $-\sqrt{2}$ is not rational, this set has no largest number, so no number needs to be removed from it to make it into a cut. The difference C - D of two cuts C, D is just the sum C + (-D).

・ロ・ ・ 日・ ・ ヨ・

Multiplication is even trickier: the problem is that it is *not* true that if x < y and z < w, then xy < zw, though this is true if x, y, z, w are all positive. We there for start by defining a cut C to be positive if $0 \in C$. Then the product CD of two positive cuts C, D consists of all product *cd* of positive rational numbers c, d, lying in C, D, respectively, together with all rational numbers r < 0. We multiply negative cuts via the rules

(-C)D = C(-D) = -(CD), (-C)(-D) = CD. The multiplicative inverse C^{-1} of a positive cut C then consists of all d^{-1} as d runs over the rational numbers not in C, with the largest number removed if it has one, together with all rational $e \leq 0$. We extend multiplicative inverses to negative cuts by decreeing that $(-C)^{-1} = -C^{-1}$. If $C_0 = \{r \in \mathbb{Q} : r < 0\}$ is the cut defining the real number 0, then C_0^{-1} is not defined. Then one can check that the set of real numbers satisfies all the properties of an ordered field.

ヘロン 人間 とくほ とくほ とう

We also deduce that every nonempty set *S* of real numbers that is bounded below in the sense that there is $x \in \mathbb{R}$ with $x \leq y$ for all $y \in S$ has a greatest lower bound *z*, so that *z* is the unique largest lower bound for *S*. We also call *z* the infimum of *S* and denote it by inf *S*. To see that inf *S* exists if *S* is nonempty and bounded below just note that $-S = \{-x < x \in S\}$ is bounded above whenever *S* is bounded below; then inf $S = -\sup(-S)$.

The least upper bound property immediately implies that

The Archimedean Property

The set \mathbb{N} of positive integers is not bounded above; equivalently, given $x \in \mathbb{R}$ there is $n \in \mathbb{N}$ with x < n.

Proof.

Indeed, if \mathbb{N} were bounded above, then it would have a least upper bound x, whence x - 1 is not an upper bound for \mathbb{N} and there is $n \in \mathbb{N}$ with n > x - 1. But then $n + 1 \in \mathbb{N}$ and n + 1 > x, a contradiction.

As the Fitzpatrick text points out, this property was actually proved centuries before Archimedes, as Archimedes himself acknowledged; but it is still traditional to call this the Archimedean property. Note that an equivalent formulation of this property states that given any positive real numbers a, b we have na > b for some $n \in \mathbb{N}$; to see this just choose $n \in \mathbb{N}$ with $n > \frac{b}{a}$.

An important consequence of the construction of the real numbers from the rational numbers is

The Density Theorem (Theorem 1.9, p. 15, Fitzpatrick)

For any real numbers x, y with x < y there is a rational number z with x < z < y.

Proof.

The proof is much easier with the construction of the real numbers available than it is in Fitzpatrick (who only *assumes* that the real numbers exist and satisfy the Least Upper Bound Property). Indeed, if x < y, then since y is the least upper bound of the set C_y , it follows that x is not an upper bound of this set, so that we can find a rational $z \in C_y$ with x < z. Then x < z < y, as desired.

An equivalent formulation of the Density Theorem says that given any $x \in \mathbb{R}$ and $\epsilon \in \mathbb{R}^+$, there is $y \in \mathbb{Q}$ with $|x - y| < \epsilon$; in words, any real number can be approximated arbitrarily closely by rational numbers.

イロト イポト イヨト イヨト

The corresponding property of $\ensuremath{\mathbb{Z}}$ within $\ensuremath{\mathbb{R}}$ is

Theorem 1.8, p. 14, Fitzpatrick

For any $c \in \mathbb{R}$ there is exactly one integer k in the half-open interval [c, c + 1).

I will refer to the text for the proof, which is straightforward.

Lecture 3-29: The real numbers, continuec

イロト イポト イヨト イヨト

In the remaining time I will give a heads up about problem 17 in this week's homework, which asks you to show that every positive real number c has a square root. You *cannot* use the notation \sqrt{c} in the proof, as the whole point is to *show* that the number \sqrt{c} exists. Instead, following the hint in the text, show that if $b^2 < c$, then for suitably small r > 0 we have $(b + r)^2 < c$, so that b cannot be an upper bound for the set S of all real numbers x with $x^2 < c$. Thus the least upper bound y of this set cannot be such that $y^2 < c$; similarly we cannot have $y^2 > c$. Hence $y^2 = c$, as desired.

・ロ・ ・ 日・ ・ ヨ・