
Lecture 6-4

Last time we reviewed the main facts about matrices; we now recall the connections be-
tween them and linear transformations. Given a linear transformation f from a finite-
dimensional vector space V to itself and a basis B = {v1, . . . , vn} of V we write each f(vi)
as a linear combination

∑n
j=1 ajivj and then call the matrix A with jith entry aji the

matrix of A relative to B. If B is replaced by a different basis B′ = {v′1, . . . , v′n} and if
each v′i is written as

∑n
j=1 pjivj , then the matrix P with jith entry pji is invertible and

the matrix of f relative to B′ is A′ = P−1AP , a matrix similar to A. Given f we naturally
try to find a basis B such that the matrix of f with respect to B is as simple as possible.
If there is a basis B whose ith vector vi is an eigenvector of f with eigenvalue λi then the
matrix of f relative to B is diagonal with ith diagonal entry λi; we call f or A diagonaliz-
able in this situation. More precisely, if the ith column of the matrix P is an eigenvector
of A with eigenvalue λi then D = P−1AP is diagonal with ith entry λi along the diagonal.
In general, any square matrix A has at least one (possibly complex) eigenvalue λ, since its
characteristic polynomial p(x) = det(A− xI) factors into linear factors over C. Then A is
diagonalizable if and only if the geometric multiplicity of any of its eigenvalues λ (i.e. the
dimension of the λ-eigenspace) matches the algebraic multiplicity (the largest power k of
x − λ dividing p(x). Similar matrices have the same eigenvalues with the same algebraic
and geometric multiplicities, though they need not have the same eigenvectors.



Not all matrices are diagonalizable, but we have seen a large class of diagonalizable ma-
trices, namely the (real) symmetric n × n matrices. Any such matrix A takes the form
UTDU = U−1DU for some orthogonal matrix U (so that UT = U−1) and real diagonal
matrix D; in particular, all eigenvalues of A are real. We say that A is positive definite if
all eigenvalues of A are positive, or equivalently vTAv > 0 for all nonzero v ∈ Rn. More
generally, A is said to have signature (p, q) if it has p positive eigenvalues and q negative
ones (counting multiplicities); note that the multiplicity of 0 as an eigenvalue is just n
minus the rank of A, so is 0 if and only if A is invertible. If A has signature (p, q) then A
is congruent, but not necessarily similar, to a diagonal matrix D having p 1s and q − 1s
along the diagonal and all other entries 0; that is, we have A = PTDP for some invertible
but not necessarily orthogonal matrix P . The quadratic form corresponding to A, that is,
the homogeneous quadratic polynomial sending the row vector x = (x1, . . . , xn) to xAxT ,
is then the sum of the squares of p linear polynomials minus the sum of the squares of q
linear polynomials, where the linear polynomials involved can be taken to correspond to
orthogonal but not necessarily orthonormal vectors in Rn.



The determinantal criterion for positive definiteness asserts that a symmetric n×n matrix
A is positive definite if and only if all upper left i × i minors A(i) of A (consisting of
the entries in its first i rows and columns) have positive determinant (for 1 ≤ i ≤ n).
The corresponding criterion for negative definiteness is that detA(i) is positive for even i
but negative for odd i. Symmetric positive semidefinite matrices have unique symmetric
positive semidefinite square roots; these arise in the singular value decomposition, which
we will review tomorrow.



Given an inconsistent system Ax = b we can replace it by its normal equations, which form
the system ATAx = AT b. This last system is always consistent and has a unique solution
whenever the matrix A has full rank (i.e. rank equal to the minimum of the number of
its rows and its columns). In terms of linear transformations, the transformation f with
matrix A (relative to the standard bases of Rn and Rm) is one-to-one when restricted to
the row space of A and maps this space onto its column space, while sending the orthogonal
complement of the row space of A to 0. In solving the normal equations ATAx = AT b we
are in effect first projecting b orthogonally to the column space of A, obtaining a vector
b′, and then finding the unique shortest vector x with Ax = b′. In turn we can find x
by locating any vector x′ with Ax′ = b′ and then projecting x′ to the row space of A.
In general, given a subspace S of Rn with dimension m, its orthogonal complement S⊥

(consisting of all vectors orthogonal to every vector in S) has dimension n−m and every
v ∈ Rn is uniquely the sum of some s ∈ S and s′ ∈ S⊥.


